Skip to main content
Log in

Inositol-1,4,5-trisphosphate mass content in isolated perfused rat heart during alpha-1-adrenoceptor stimulation

  • Part I: Cardiac Development and Regulation
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Inositol-1,4,5-trisphosphate (IP3) has been proposed to be a second messenger in response to alpha-1-adrenoceptor stimulation also in myocardial cells. We studied the effect of alpha-1-adrenoceptor stimulation (5 × 10−5 mol/l phenylephrine or 5 × 10−5 mol/l noradrenaline both in the presence of 10−6 mol/l timolol) on IP3 mass content in isolated perfused rat hearts. IP3 content was determined by a specific receptor-binding assay-kit (TRK 1000, Amersham) after validating the method. For comparison also the effect of muscarinic stimulation (10−4 mol/l carbachol in the presence of 10−6 mol/l timolol) on IP3 content was measured in corresponding preparations. A basal IP3 level of about 75 pmol/mg protein was found. There were no prominent effects of alpha-1-adrenoceptor stimulation on total IP3 content in isolated perfused rat hearts. Phenylephrine gave a statistically significant increase of about 40% at 1/4 min and a statistically significant decrease of about 25% at 4 min after start of exposure. Noradrenaline, however, gave no statistically significant change of IP3 at the time-points studied. Muscarinic stimulation caused a slight, statistically insignificant, increase of IP3 at 1/4 min. The results are compatible with an assumption that agonist stimulation evokes a localized increase of IP3 which may be masked by a relatively high total IP3 mass content. The IP3 peak after phenylephrine coincided with the early positive inotropic phase of the response reported earlier in perfused rat hearts for alpha-1-adrenoceptor stimulation by phenylephrine. Although this might be compatible with a role for IP3 in this early and transient phase, a mediator function of IP3 in the inotropic response is not established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terzic A, Pucćat M, Vassort G, Vogel SM: Cardiac α1-adrenoceptors: An overview. Pharmacol Rev 45: 147–175, 1993

    PubMed  Google Scholar 

  2. Osnes J-B, Aass H, Skomedal T: On adrenergic regulation of heart function: Role of myocardial α-adrenoceptors. In: H. Refsum, O.D. Mjøs (eds). α-Adrenoceptor Blockers in Cardiovascular Disease. Churchill Livingstone, Edinburgh, London, Melbourne and New York, 1985, pp 69–102

    Google Scholar 

  3. Berridge MJ, Irvine RF: Inositol phosphates and cell signalling. Nature 341: 197–205, 1989

    PubMed  Google Scholar 

  4. Terzic A, Pucéat M, Clement O, Scamps F, Vassort G: α1-Adrenergic effects on intracellular pH and calcium and on myofilaments in single rat cardiac cells. J Physiol 447: 275–292, 1992

    PubMed  Google Scholar 

  5. Fedida D, Braun AP, Giles WR: α1-Adrenoceptors in myocardium: Functional aspects and transmembrane signaling mechanisms. Physiol Rev 73: 469–487, 1993

    PubMed  Google Scholar 

  6. Hansen CA, Joseph SK, Robishaw JD: Ins 1,4,5-P3 and Ca2+, signaling in quiescent neonatal cardiac myocytes. Biochim Biophys Acta 1224: 517–26, 1994

    Article  PubMed  Google Scholar 

  7. Woodcock EA, Suss MB, Anderson KE: Inositol phosphate release and metabolism in rat left atria. Circ Res 76: 252–260, 1995

    PubMed  Google Scholar 

  8. Poggioli J, Sulpice JC, Vassort G: Inositol phosphate production following α1-adrenergic, muscarinic or electrical stimulation in isolated rat heart. FEBS Lett 206: 292–298, 1986

    PubMed  Google Scholar 

  9. Schmitz W, Scholz H, Scholz J, Steinfath M: Increase in IP3 precedes α-adrenoceptor-induced increase in force of contraction in cardiac muscle. Europ J Pharmacol 140: 109–111, 1987

    Article  Google Scholar 

  10. Kohl C, Schmitz W, Scholz H, Scholz J, Tóth M, Döring V, Kalmar P: Evidence for α1-adrenoceptor-mediated increase of inositol trisphosphate in the human heart. J Cardiovase Pharmacol 13: 324–327, 1989

    Google Scholar 

  11. Heathers GP, Evers AS, Corr PB: Enhanced inositol trisphosphate response to α1-adrenergic stimulation in cardiac myocytes exposed to hypoxia. J Clin Invest 83: 1409–1413, 1989

    PubMed  Google Scholar 

  12. Martinussen HJ, Waldenstrom A, Ronquist G: Dynamic changes of myocardial inositoltrisphosphate and cyclic nucleotides: relationship to contractile response in the perfused working heart after adrenergic and muscarinic agonist stimulation. Acta Physiol Scand 150: 133–139, 1994

    PubMed  Google Scholar 

  13. Martinussen HJ, Waldenstrom A, Ronquist G: Myocardial inositoltrisphosphate is depressed by dibutyryl CAMP. An experimental study in the isolated working rat heart. Acta Physiol Scand 153: 143–149, 1995

    PubMed  Google Scholar 

  14. Scholz J, Troll U, Sandig P, Schmitz W, Scholz H, Schulte am Esch J: Existence and α1-adrenergic stimulation of inositol polyphosphates in mammalian heart. Mol Pharmacol 42: 134–140, 1992b

    PubMed  Google Scholar 

  15. Woodcock EA, White LBS, Smith AI, McLeod JK: Stimulation of phosphatidylinositol metabolism in the isolated, perfused rat heart. Circ Res 61: 625–631, 1987

    PubMed  Google Scholar 

  16. Skomedal T, Schiander IG, Osnes J-B: Both alpha and beta adrenoceptor-mediated components contribute to final inotropic response to norepinephrine in rat heart. J Pharmacol Exp Ther 247: 1204–1210, 1988

    PubMed  Google Scholar 

  17. Skomedal T, Osnes J-B, Øye I: Differences between α-adrenergic and β-adrenergic inotropic effects in rat heart papillary muscles. Acta Pharmacol Toxicol 50: 1–12, 1982

    Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275, 1951

    PubMed  Google Scholar 

  19. Waldenström A, Ronquist G, Carlsson L, Sabler E, Baldesten A, Sirén M: Analysis of free inositol trisphosphate in heart tissue by FPLC and isotachophoresis. Biochim Biophys Acta 1051: 185–191, 1990

    Article  PubMed  Google Scholar 

  20. Mouton R, Huisamen B, Lochner A: Increased myocardial inositol trisphosphate levels during α1-adrenergic stimulation and reperfusion of ischaemic rat heart. J Mol Cell Cardiol 23: 841–850, 1991

    Article  PubMed  Google Scholar 

  21. Xiang H, McNeill JH: Influence of arachidonic acid metabolites on cardiac α1-adrenoceptor responses in diabetic rats. Can J Physiol Pharmacol 70: 680–686, 1992

    PubMed  Google Scholar 

  22. Liscovitch M: Crosstalk among multiple signal-activated phospholipases. TIBS 17: 393–399, 1992

    PubMed  Google Scholar 

  23. Heathers GP, Corr PB, Rubin LJ: Transient accumulation of inositol (1,3,4,5)-tetrakisphosphate in response to α1-adrenergic stimulation in adult cardiac myocytes. Biochem Biophys Res Commun 156: 485–492, 1988

    PubMed  Google Scholar 

  24. Xiang H, McNeill JH: α1-Adrenoceptor-mediated phosphoinositide breakdown and inotropic response in diabetic hearts. Am J Physiol 260: H557-H562, 1991

    PubMed  Google Scholar 

  25. Skomedal T, Aass H, Osnes J-B: Specific binding of [3H]prazosin to myocardial cells isolated from adult rats. Biochem Pharmacol 33: 1897–1906, 1984

    Article  PubMed  Google Scholar 

  26. Skomedal T, Osnes J-B: Qualitative differences between the inotropic responses in rat papillary muscles to α-adrenoceptor and β-adrenoceptor stimulation by both noradrenaline and adrenaline. Acta Pharmacol Toxicol 52: 57–67, 1983

    Google Scholar 

  27. Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ: Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 268: 23735–23738, 1993

    PubMed  Google Scholar 

  28. White AM, Varney MA, Maeda N, Mikoshiba K, Watson SP: Comparison of Ins( 1,4,5)P3 receptors from rat cerebellum and bovine adrenal cortex. Biochim Biophys Acta 1175: 307–311, 1993

    Article  PubMed  Google Scholar 

  29. Ventura C, Guarnieri C, Stefanelli C, Cirielli C, Lakatta EG, Capogrossi MC: Comparison between alpha-adrenergic- and k-opioidergic-mediated inositol(1,4,5)P3/inositol(1,3,4,5)P4 formation in adult cultured rat ventricular cardiomyocytes. Biochem Biophys Res Commun 179: 972–978, 1991

    PubMed  Google Scholar 

  30. Kohl C, Schmitz W, Scholz H, Scholz J: Evidence for the existence of inositol tetrakisphosphate in mammalian heart. Circ Res 66: 580–583, 1990

    PubMed  Google Scholar 

  31. Guse, AH, Berg I, Gercken G: Metabolism of inositol phosphates in α,-adrenoceptor-stimulated and homogenized cardiac myocytes of adult rats. Biochem J 261: 89–92, 1989

    PubMed  Google Scholar 

  32. Steinberg SF, Kaplan LM, Inouye T, Zhang JF, Robinson RB: Alpha-1 adrenergic stimulation of 1,4,5-inositol trisphosphate formation in ventricular myocytes. J Pharmacol Exp Ther 250: 1141–1148, 1989

    PubMed  Google Scholar 

  33. Brown JH, Buxton IL, Brunton LL: α1-Adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57: 532–537, 1985

    PubMed  Google Scholar 

  34. Jones LG, Goldstein D, Brown JH: Guanine nucleotide-dependent inositol trisphosphate formation in chick heart cells. Circ Res 62: 299–305, 1988

    PubMed  Google Scholar 

  35. Balla T, Cart KJ: Phosphoinositides and calcium signaling. New aspects and diverse functions in cell regulation. Trends Endocrin Metab 5: 250–255, 1994

    Article  Google Scholar 

  36. Baron CB, Ozaki S, Watanabe Y, Hirata M, LaBelle EF, Coburn RF: Inositol 1,4,5-trisphosphate binding to porcine tracheal smooth muscle aldolase. J Biol Chem 270: 20459–20465, 1995

    PubMed  Google Scholar 

  37. Scholz H, Eschenhagen T, Mende U, Neumann J, Schmitz W, Steinfath M: Possible mechanisms of the positive inotropic effect of a-adrenergic receptor stimulation in the heart. In: M. Fujiwara, T. Sugimoto and K. Kogure (eds). α-Adrenoceptors: Signal transduction, ionic channels and effector organs. Excerpta Medica, Amsterdam, Hong Kong, Princeton, Sydney, Tokyo, 1992a, pp. 101–111

    Google Scholar 

  38. Osnes J-B, Refsum H, Skomedal T, Øye I: Qualitative differences between β-adrenergic and α-adrenergic inotropic effects in heart muscle. Acta Pharmacol Toxicol 42: 235–247, 1978

    Google Scholar 

  39. Tohse N, Hattori Y, Nakaya H, Kanno M: Effects of α-adrenoceptor stimulation on electrophysiological properties and mechanics in rat papillary muscle. Gen Pharmac 18: 539–546, 1987

    Google Scholar 

  40. Otani H, Otani H, Das DK: α1-Adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ Res 62: 8–17, 1988

    PubMed  Google Scholar 

  41. Otani H, Otani H, Uriu T, Hara M, Inoue M, Omori K, Cragoe EJ Jr, Inagaki C: Effects of inihibitors of protein kinase C and Na/H+ exchange on α1-adrenoceptor-mediated inotropic responses in the rat left ventricular papillary muscle. Br J Pharmacol 100: 207–210, 1990

    PubMed  Google Scholar 

  42. Nosek TM, Williams MF, Zeigler ST, Godt RE: Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am J Physiol 250: C807-C811, 1986

    PubMed  Google Scholar 

  43. Fabiato, A: Inositol (1,4,5)-trisphosphate-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Biophys J 49: 190a,1986

  44. Movsesian MA, Thomas AP, Selak M, Williamson JR: Inositol trisphosphate does not release Ca2+ from permeabilized cardiac myocytes and sarcoplasmic reticulum. FEBS Lett 185: 328–332, 1985

    PubMed  Google Scholar 

  45. Zhu Y, Nosek TM: Inositol trisphosphate enhances Ca2− oscillations but not Ca2+-induced Ca2− release from cardiac sarcoplasmic reticutum. Eur J Physiol 418: 1–6, 1991

    Google Scholar 

  46. Kentish JC, Barsotti RJ, Lea TJ, Mulligan JP, Patel JR, Ferenczi MA: Calcium release from cardiac sarcoplasmic reticulum induced by photorelease of calcium or ins(1,4,5)IP3. Am J Physiol 258: H610-H615, 1990

    PubMed  Google Scholar 

  47. Vites M, Pappano A: Inositol 1,4,5-trisphosphate releases intracellular Ca2+ in permeabilized chick atria. Am J Physiol 258: H1745-H1752, 1990

    PubMed  Google Scholar 

  48. Pucéat M, Clément O, Lechene P, Pelosin JM, Ventura-Clapier R, Vassort G: Neurohormonal control of calcium sensitivity of myofilaments in rat single heart cells. Circ Res 67: 517–524, 1990

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanem, S., Enger, M., Skomedal, T. et al. Inositol-1,4,5-trisphosphate mass content in isolated perfused rat heart during alpha-1-adrenoceptor stimulation. Mol Cell Biochem 163, 167–172 (1996). https://doi.org/10.1007/BF00408654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408654

Key words

Navigation