Skip to main content
Log in

Inosine nucleosidase from Azotobacter vinelandii

Purification and properties

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

An enzyme catalyzing the hydrolysis of purine nucleosides was found to occur in the extract of Azotobacter vinelandii, strain 0, and was highly purified by ammonium sulfate fractionation, DEAE-cellulose chromatography, hydroxylapatite chromatography and gel filtration on Sephadex G-150. A strict substrate specificity of the purified enzyme was shown with respect to the base components. The enzyme specifically attacked the nucleosides without amino groups in the purine moiety: inosine gave the maximum rate of hydrolysis and xanthosine was hydrolyzed to a lesser extent. The pH optimum of inosine hydrolysis was observed from pH 7 to 9, while xanthosine was hydrolyzed maximally at pH 7. The K m values of the enzyme for inosine were 0.65 and 0.85 mM at pH 7.1 and 9.0, respectively, and the value for xanthosine was 1.2 mM at pH 7.1.

Several nucleotides inhibited the enzyme: the phosphate portions of the nucleotides were suggested to be responsible for the inhibition by nucleotides. Although the inhibition of the enzyme by nucleotides was apparently non-competitive type with respect to inosine, allosteric (cooperative) binding of the substrate was suggested in the presence of the inhibitor. The physiological significance of the enzyme was discussed in connection with the degradation and salvage pathways of purine nucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achar, B. S., Vaidyanathan, C. S.: Purification and properties of uridine hydrolase from mung-bean (Phaseolus radiatus) seedlings. Arch. Biochem. Biophys. 119, 356–362 (1967)

    PubMed  Google Scholar 

  • Andrews, P.: Estimation of the molecular weights of proteins by Sephadex gel filtration. Biochem. J. 91, 222–233 (1964)

    Google Scholar 

  • Carter, C. E.: Partial purification of a non-phosphorolytic uridine nucleosidase from yeast. J. Am. Chem. Soc. 73, 1508–1510 (1951)

    Google Scholar 

  • Chen, P. S. Jr., Toribara, T. Y., Warner, H.: Microdetermination of phosphorus. Anal. Chem. 28, 1756–1758 (1956)

    Google Scholar 

  • Clarke, J. T.: Simplified ‘disc’ (polyacrylamide gel) electrophoresis. Ann. N.Y. Acad. Sci. 121, 428–436 (1964)

    PubMed  Google Scholar 

  • Dewey, V. C., Kidder, G. W.: Partial purification and properties of a nucleoside hydrolase from Crithidia. Arch. Biochem. Biophys. 157, 380–387 (1973)

    PubMed  Google Scholar 

  • Dygert, S., Li, L. H., Florida, D., Thoma, J. A.: Determination of reducing sugar with improved precision. Anal. Biochem. 13, 367–374 (1965)

    PubMed  Google Scholar 

  • Friedmann, H. C., Harris, D. L.: The formation of α-glycosidic 5′-nucleotides by a single displacement trans-N-glycosidase. J. Biol. Chem. 240, 406–412 (1965)

    PubMed  Google Scholar 

  • Gardner, R., Kornberg, A.: Biochemical studies of bacterial sporulation and germination. V. Purine nucleoside phosphorylase of vegetative cells and spores of Bacillus cereus. J. Biol. Chem. 242, 2383–2388 (1967)

    PubMed  Google Scholar 

  • Guranowski, A., Schneider, Z.: Purification and characterization of adenosine nucleosidase from barley leaves. Biochim. Biophys. Acta 482, 145–158 (1977)

    PubMed  Google Scholar 

  • Henderson, J. F.: Nucleotide metabolism. An introduction. New York-London: Academic Press 1973

    Google Scholar 

  • Heppel, L. A., Hilmoe, R. J.: Phosphorolysis and hydrolysis of purine ribosides by enzymes from yeast. J. Biol. Chem. 198, 683–694 (1952)

    PubMed  Google Scholar 

  • Kalckar, H. M.: Differential spectrophotometry of purine compounds by means of specific enzymes. I. Determination of hydroxypurine compounds. J. Biol. Chem. 167, 429–443 (1947)

    Google Scholar 

  • Lampen, J. O., Wang, T. P.: The mechanism of action of Lactobacillus pentosus nucleosidase. J. Biol. Chem. 198, 385–395 (1952)

    PubMed  Google Scholar 

  • Lawrence, N. L.: The cleavage of adenosine by spores of Bacillus cereus. J. Bacteriol. 70, 577–582 (1955)

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with Folin-Phenol reagent. J. Biol. Chem. 193, 265–272 (1951)

    PubMed  Google Scholar 

  • MacNutt, W. S.: The enzymatically catalysed transfer of the deoxyribosyl group from one purine or pyrimidine to another. Biochem. J. 50, 384–397 (1952)

    PubMed  Google Scholar 

  • Mazelis, M., Creveling, R. K.: An adenosine hydrolase from Brussel sprouts. J. Biol. Chem. 238, 3358–3361 (1963)

    PubMed  Google Scholar 

  • Miller, G. W., Evans, H. J.: Nucleosidase from higher plants. Plant Physiol. 30, Suppl. 37 (1955)

    Google Scholar 

  • Murray, A. W.: The biological significance of purine salvage. Ann. Rev. Biochem. 40, 811–826 (1971)

    PubMed  Google Scholar 

  • Parkes, R. E., Jr., Agarwal, R. P.: Purine nucleoside phosphorylase. In: The enzymes, Vol. 7, 3rd ed. (P. D. Boyer, ed.), pp. 483–514, New York: Academic Press 1972

    Google Scholar 

  • Poulton, J. E., Butt, V. S.: Partial purification and properties of adenosine nucleosidase from leaves of spinach beet (Beta vulgaris L). Planta (Berl.) 131, 179–185 (1976)

    Google Scholar 

  • Powell, J. F., Hunter, J. R.: Adenosine deaminase and ribosidase in spores of Bacillus cereus. Biochem. J. 62, 381–387 (1956)

    PubMed  Google Scholar 

  • Roberts, D. W. A.: The wheat leaf phosphatases. II. Pathways of hydrolysis of some nucleosides at pH 5.5. J. Biol. Chem. 222, 259–270 (1956)

    PubMed  Google Scholar 

  • Roush, A. H., Betz, R. F.: Purification and properties of trans-N-deoxyribosylase. J. Biol. Chem. 233, 261–266 (1958)

    PubMed  Google Scholar 

  • Schmidt, G., Walter, R. D., Königk, E. A purine nucleoside hydrolase from Trypanosoma gambiense. Purification and properties. Tropenmed. Parasit. 26, 19–26 (1975)

    Google Scholar 

  • Schramm, V. L., Lazorik, F. C.: The pathway of adenylate catabolism in Azotobacter vinelandii. Evidence for adenosine monophosphate nucleosidase as the regulatory enzyme. J. Biol. Chem. 250, 1801–1808 (1975)

    Google Scholar 

  • Serra, M. C., Falcone, G., Cercigmani, G., Ipata, P. L.: Some regulatory properties of purine nucleoside phosphorylase of Bacillus cereus. FEBS Lett. 18, 335–338 (1971)

    PubMed  Google Scholar 

  • Takagi, Y., Horecker, B. L.: Purification and properties of a bacterial riboside hydrolase. J. Biol. Chem. 225, 77–86 (1957)

    PubMed  Google Scholar 

  • Tarr, H. L. A.: Fish muscle riboside hydrolase. Biochem. J. 59, 386–391 (1955)

    PubMed  Google Scholar 

  • Terada, M., Tatibana, M., Hayaishi, O.: Purification and properties of nucleoside hydrolase from Pseudomonas fluorescens. J. Biol. Chem. 242, 5578–5585 (1967)

    PubMed  Google Scholar 

  • Yoshino, M., Ogasawara, N., Suzuki, N., Kotake, Y.: Regulation of AMP nucleosidase in Azotobacter vinelandii. Biochim. Biophys. Acta. 146, 620–622 (1967)

    PubMed  Google Scholar 

  • Yoshino, M.: AMP nucleosidase from Azotobacter vinelandii. I. Purification and properties. J. Biochem. 68, 321–329 (1970)

    Google Scholar 

  • Yoshino, M., Ogasawara, N.: AMP nucleosidase from Azotobacter vinelandii. III. Kinetics of allosteric interactions. J. Biochem. 72, 223–233 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshino, M., Tsukada, T. & Tsushima, K. Inosine nucleosidase from Azotobacter vinelandii . Arch. Microbiol. 119, 59–64 (1978). https://doi.org/10.1007/BF00407928

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00407928

Key words

Navigation