Skip to main content
Log in

Cloning of Nucleoside Phosphorylase Genes from the Extremophilic Bacterium Halomonas chromatireducens AGD 8-3 with the Construction of Recombinant Producer Strains of These Proteins and the Study of Their Enzymatic Properties

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Thymidine phosphorylase (deoA) and purine nucleoside phosphorylase (deoD) genes from the extremophilic bacterium Halomonas chromatireducens AGD 8-3 have been cloned. Expression plasmids were constructed, and highly efficient recombinant producer strains were obtained for these proteins. Recombinant nucleoside phosphorylases were isolated by ion-exchange chromatography in a homogeneous state, and their physical and enzymatic properties were studied. It was shown that the studied thymidine phosphorylase (HrTPP) and purine nucleoside phosphorylase (HrPNP) form the dimeric and hexameric forms, respectively. It was shown that the specific activity of HrTPP from the extremophilic bacterium H. chromatireducens AGD 8-3 was higher relative to thymidine (in comparison with its counterpart from E. coli).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Pugmire, M.J., Cook, W.J., Jasanoff, A., Walter, M.R., and Ealick, S.E., J. Mol. Biol., 1998, vol. 281, no. 2, pp. 285–299.

  2. Caradoc-Davies, T.T., Cutfield, S.M., Lamont, I.L., and Cutfield, J.F., J. Mol. Biol., 2004, vol. 337, no. 2, pp. 337–354.

  3. Safonova, T.N., Mordkovich, N.N., Veiko, V.P., Okorokova, N.A., Manuvera, V.A., Dorovatovskii, P.V., Popov, V.O., and Polyakov, K.M., Acta Crystallogr. D. Struct. Biol., 2016, vol. 72, no. 2, pp. 203–210.

    Article  CAS  Google Scholar 

  4. Mordkovich, N.N., Safonova, T.N., Antipov, A.N., Manuvera, V.A., Polyakov, K.M., Okorokova, N.A., and Veiko, V.P., Appl. Biochem. Microbiol, 2018, vol. 54, no. 1, pp. 12–20.

    Article  CAS  Google Scholar 

  5. Konstantinova, I.D., Leont’eva, N.A., Galegov, G.A., Ryzhova, O.I., Chuvikovskii, D.V., Antonov, K.V., Esipov, R.S., Taran, S.A., Verevkina, K.N., Feofanov, S.A., and Miroshnikov, A.I., Bioorg. Khim., 2004, vol. 30, no. 6, pp. 613–620.

    CAS  PubMed  Google Scholar 

  6. Utagawa, T., J. Mol. Cat. B: Enzym., 1999, vol. 6, pp. 215–222.

    Article  CAS  Google Scholar 

  7. Komatsu, H. and Araki, T., Nucleosides Nucleotides Nucleic Acids, 2005, vol. 24, nos. 5–7, pp. 1127–1130.

    Article  CAS  Google Scholar 

  8. Roivainen, J., Elizarova, T., Lapinjoki, S., Mikhailopulo, I.A., Esipov, R.S., and Miroshnikov, A.I., Nucleosides Nucleotides Nucleic Acids, 2007, vol. 26, nos. 8–9, pp. 905–909.

    Article  CAS  Google Scholar 

  9. Mikhailopulo, I.A. and Miroshnikov, A.I., Acta Naturae, 2010, vol. 2, no. 2, pp. 38–61.

    Article  Google Scholar 

  10. Mahmoud, S., Hasabelnaby, S., Hammad, S.F., and Sakr, T.M., J. Adv. Pharm. Res., vol. 2, no. 2, pp. 73–88.

  11. Liekens, S., De Clercq, E., and Neyts, J., Biochem. Pharmacol., 2001, vol. 61, no. 3, pp. 253–270.

    Article  CAS  Google Scholar 

  12. Carmeliet, P., Nature, 2005, vol. 438, no. 7070, pp. 932–936.

    Article  CAS  Google Scholar 

  13. Furukawa, T., Tabata, S., Yamamoto, M., Kawahara, K., Shinsato, Y., Minami, K., Shimokawa, M., and Akiyama, S., Pharmacol. Res., 2018, vol. 132, pp. 15–20.

    Article  CAS  Google Scholar 

  14. Ashour, O.M., Naguib, F.N.M., Khalifa, M.M.A., Abdel-Raheem, M.H., Panzica, R.P., and el Kouni, M.H., Cancer Res., 1995, vol. 55, no. 5, pp. 1092–1098.

    CAS  PubMed  Google Scholar 

  15. Iigo, M., Nishikata, K., Nakajima, Y., Szinai, I., Veres, Z., Szabolcs, A., and De Clercq, E., Biochem. Pharmacol., 1990, vol. 39, no. 7, pp. 1247–1253.

    Article  CAS  Google Scholar 

  16. Pogosyan, L.G. and Akopyan, Zh.I., Biomed. Khim., 2013, vol. 59, no. 5, pp. 483–497.

    Article  CAS  Google Scholar 

  17. Pogosyan, L.G., Nersesova, L.S., Gazaryants, M.G., Mkrtchyan, Z.S., Meliksetyan, G.O., and Akopyan, Zh.I., Ukr. Biokhim. Zh., 2008, vol. 80, no. 5, pp. 95–104.

    CAS  Google Scholar 

  18. Jensen, K.F. and Nygaard, P., Eur. J. Biochem., 1975, vol. 51, no. 1, pp. 253–265.

    Article  CAS  Google Scholar 

  19. Xie, X., Xia, J.HeK., Lu, L., Xu, Q., and Chen, N., Biotechnol. Lett., 2011, vol. 33, no. 6, pp. 1107–1112.

    Article  CAS  Google Scholar 

  20. Visser, D.F., Hennessy, F., Rashamuse, K., Louw, M.E., and Brady, D., Extremophiles, 2010, vol. 14, no. 2, pp. 185–192.

    Article  CAS  Google Scholar 

  21. Xie, X., Huo, W., Xia, J., Xu, Q., and Chen, N., Enzyme Microb. Technol., 2012, vol. 51, no. 1, pp. 59–65.

    Article  CAS  Google Scholar 

  22. Liu, K., Zhou, Y., Zhang, J., Chu, J., Zhang, Y., and He, B., Biotechnol Lett., 2017, vol. 39, no. 12, pp. 1903–1910.

    Article  CAS  Google Scholar 

  23. Zhou, X., Szeker, K., Janocha, B., Bohme, T., Albrecht, D., Mikhailopulo, I.A., and Neubauer, P., FEBS J., 2013, vol. 280, no. 6, pp. 1475–1490.

    Article  CAS  Google Scholar 

  24. Almendros, M., Gago, J.V., and Carlos, J.B., Molecules, 2009, vol. 14, no. 3, pp. 1279–1287.

    Article  CAS  Google Scholar 

  25. Szeker, K., Zhou, X., Schwab, T., Casanueva, A., Cowan, D., Mikhailopulo, I.A., and Neubauer, P., J. Mol. Catal., 2012, vol. 84, pp. 27–34.

    Article  CAS  Google Scholar 

  26. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  27. Veiko, V.P., Siprashvili, Z.Z., Ratmanova, K.I., Gul’ko, L.B., Andryukhina, R.V., and Debabov, V.G., Biotekhnologiya, 1994, no. 4, pp. 2–4.

  28. Veiko, V.P., Siprashvili, Z.Z., Ratmanova, K.I., Gul’ko, L.B., Mironov, A.A., Andryukhina, R.V., and Debabov, V.G., Dokl. Ross. Akad. Nauk, 1994, vol. 339, no. 6, pp. 819–821.

    CAS  Google Scholar 

  29. Veiko, V.P., Osipov, A.S., Shekhter, I.I., Buklenkov, M.T., Ratmanova, K.I., Gul’ko, L.B., Chibiskova, N.A., Errais, L.L., Derevshchikova, E.B., and Debabov, V.G., Bioorg. Khim., 1995, vol. 21, no. 5, pp. 354–358.

    CAS  PubMed  Google Scholar 

  30. Shapovalova, A.A, Khizhnyak, T.V., Turova, T.P., and Sorokin, D.Yu., Microbiology (Moscow), 2009, vol. 78, no. 1, pp. 102–111.

    Article  CAS  Google Scholar 

  31. Veiko, V.P., Ratmanova, K.I., Osipov, A.S., Bulenkov, M.T., and Pugachev, V.V., Bioorg. Khim., 1991, vol. 17, no. 5, pp. 685–689.

    CAS  PubMed  Google Scholar 

  32. Bradford, M.M., Anal. Biochem., 1976, vol. 2, pp. 248–254.

    Article  Google Scholar 

  33. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  Google Scholar 

  34. Panova, N.G., Alexeev, K.S., Kuzmichev, A.S., Shcheveleva, E.V., Gavryushov, S.A., Polyakov, K.M., Kritsyn, A.M., Mikhailov, S.N., Esipov, R.S., and Miroshnikov, A.I., Biochemistry (Moscow), 2007, vol. 72, no. 1, pp. 21–28.

    CAS  PubMed  Google Scholar 

  35. Xie, X., Xia, J., He, K., Lu, L., Xu, Q., and Chen, N., Biotechnol. Lett., 2011, vol. 33, no. 6, pp. 1107–1112.

    Article  CAS  Google Scholar 

  36. Mordkovich, N.N., Manuvera, V.A., Veiko, V.P., and Debabov, V.G., Biotekhnologiya, 2012, no. 1, pp. 21–30.

  37. Shapovalova, A.A., Khijniak, T.V., Tourova, T.P., Muyzer, G., and Sorokin, D.Y., Extremophiles, 2008, vol. 12, no. 5, pp. 619–625.

    Article  CAS  Google Scholar 

  38. Sharko, F.S., Shapovalova, A.A., Tsygankova, S.V., Komova, A.V., Boulygina, E.S., Teslyuk, A.B., Gotovtsev, P.M., Namsaraev, Z.B., Khijniak, T.V., Nedoluzhko, A.V., and Vasilov, R.G., Genome Announce., 2016, vol. 4, no. 2, pp. 1–2.

    Article  Google Scholar 

  39. Ovcharova, I.V., Eremina, S.Yu., and Mironov, A.S., Russ. J. Genet., 2004, vol. 40, no. 1, pp. 10–19.

    Article  CAS  Google Scholar 

  40. Pugmire, M.J. and Ealick, S.E., Biochem. J., 2002, vol. 361, no. 1, pp. 1–25.

    Article  CAS  Google Scholar 

  41. Mushegian, A.R. and Koonin, E.V., Protein Sci., 1994, vol. 3, no. 7, pp. 1081–1088.

    Article  CAS  Google Scholar 

  42. Mahor, D., Priyanka, A., Prasad, G.S., and Thakur, K.G., PLoS One, 2016, vol. 11, no. 10. e0164279.

    Article  Google Scholar 

  43. Walter, M.R., Cook, W.J., Cole, L.B., Short, S.A., Koszalka, G.W., Krenitsky, T.A., and Ealick, S.E., J. Biol. Chem., 1990, vol. 265, no. 23, pp. 14016–14022.

    CAS  PubMed  Google Scholar 

  44. Dayhoff, M.O., Atlas of Protein Sequence and Structure: National Biomedical Research Foundation, Dayhoff, M.O., Ed., MD: Silver Spring, 1972.

Download references

ACKNOWLEDGMENTS

The equipment of the Industrial Biotechnologies Center for Collective Use of the Fundamentals of Biotechnology Federal Research Center of the Russian Academy of Sciences was used in the study.

Funding

The study was partially supported by the Russian Foundation for Basic Research (project no. 18-04-00784 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Veiko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipov, A.N., Mordkovich, N.N., Khijniak, T.V. et al. Cloning of Nucleoside Phosphorylase Genes from the Extremophilic Bacterium Halomonas chromatireducens AGD 8-3 with the Construction of Recombinant Producer Strains of These Proteins and the Study of Their Enzymatic Properties. Appl Biochem Microbiol 56, 37–43 (2020). https://doi.org/10.1134/S0003683820010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820010020

Keywords:

Navigation