Skip to main content
Log in

Hydrolysis and synthesis of ATP by membrane-bound ATPase from a motile Streptococcus

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

ATPase was detected in the membranes of a motile Streptococcus. Maximal enzymic activity was observed at pH 8 and ATP/Mg2+ ratio of 2. Mn2+ and Ca2+ could replace Mg2+ to some extent. Besides ATP, GTP and ITP were substrates. The enzyme was inhibited by N,N′-dicyclohexylcarbodiimide but not by sodium azide, uncouplers or bathophenanthroline.

An electrochemical gradient of protons, which was artificially imposed across the membranes of Streptococcus cells by manipulation of either the K+ diffusion potential or the transmembrane pH gradient, led to ATP synthesis. ATP synthesis was abolished by proton conductors, an inhibitor of the ATPase or an increase in the extracellular K+ concentration. A comparison between the phosphate potential and the electrochemical proton gradient showed that the data found are in agreement with a stoichiometry of 2 protons translocated per molecule ATP synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\Delta \mu _{{\text{H}}^{\text{ + }} } \) :

electrochemical gradient of protons

DMO:

5,5-dimethyl-2,4-oxazolidinedione

CCCP:

carbonylcyanide m-chlorophenylhydrazone

FCCP:

carbonylcyanide p-trifluoromethoxyphenylhydrazone

DCCD:

N,N′-dicyclohexylcarbodiimide

DNP:

2,4-dimitrophenol

References

  • Abrams, A.: The release of bound adenosine triphosphatase from isolated bacterial membranes and the properties of solubilized enzyme. J. Biol. Chem. 240, 3675–3681 (1965)

    PubMed  Google Scholar 

  • Abrams, A., Smith, J. B.: Bacterial ATPase. In: The enzymes, Vol. X, 3rd ed. (P. D. Boyer, ed.), pp. 395–429. New York-London: Academic Press 1974

    Google Scholar 

  • Avron, M.: Energy transduction in isolated chloroplast membranes. In: The structural basis of membrane function (Y. Hatefi, L. Diavadi-Ohaniance, eds.), pp. 227–238. New York-London: Academic Press 1976

    Google Scholar 

  • Bonting, S. L., Simon, K. A., Hawkins, N. M.: Studies on sodium-potassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat. Arch. Biochem. Biophys. 95, 416–423 (1961)

    PubMed  Google Scholar 

  • Brand, M. D., Lehninger, A. L.: H+/ATP ratio during ATP hydrolysis by mitochondria: modification of the chemiosmotic theory. Proc. Nat. Acad. Sci. U.S.A. 74, 1955–1959 (1977)

    Google Scholar 

  • Carreira, J., Leal, J. A., Rojas, M., Munoz, E.: Membrane ATPase of Escherichia coli K12. Selective solubilization of the enzyme and its stimulation by trypsin in the soluble and membrane-bound states. Biochim. Biophys. Acta 307, 541–556 (1973)

    PubMed  Google Scholar 

  • Casadio, R., Baccarini-Melandri, A., Zannoni, D., Melandri, B. A.: Electrochemical proton gradient and phosphate potential in bacterial chromatophores. FEBS Lett. 49, 203–207 (1974)

    PubMed  Google Scholar 

  • Chapman, A. G., Fall, L., Atkinson, D. E.: Adenylate energy charge in Escherichia coli during growth and starvation. J. Bacteriol. 108, 1072–1086 (1971)

    PubMed  Google Scholar 

  • Cole, H. A., Wimpenny, J. W. T., Hughes, D. E.: The ATP pool in Escherichia coli. I. Measurement of the pool using a modified luciferase assay. Biochim. Biophys. Acta 143, 445–453 (1967)

    PubMed  Google Scholar 

  • Danon, A., Caplan, S. R.: Stimulation of ATP synthesis in Halobacterium halobium R1 by light-induced or artificially created proton electrochemical potential gradients across the cell membrane. Biochim. Biophys. Acta 423, 133–140 (1976)

    PubMed  Google Scholar 

  • de Jong, M. H., van der Drift, C.: Control of the chemotactic behavior of Bacillus subtilis cells. Arch. Microbiol. 116, 1–8 (1978)

    PubMed  Google Scholar 

  • de Jong, M. H., van der Drift, C., Vogels, G. D.: Proton-motive force and the motile behavior of Bacillus subtilis. Arch. Microbiol. 111, 7–11 (1976)

    PubMed  Google Scholar 

  • Eisenberg, R. J., Lillmars, K.: A method for gentle lysis of Streptococcus sanguis and Streptococcus mutans. Biochem. Biophys. Res. Commun. 65, 378–384 (1975)

    PubMed  Google Scholar 

  • Grinius, L., Slušnyté, R., Griniuviené, B.: ATP synthesis driven by protonmotive force imposed across Escherichia coli cell membranes. FEBS Lett. 57, 290–293 (1975)

    PubMed  Google Scholar 

  • Gromet-Elhanan, Z., Leiser, M.: Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. II. Stimulation by a K+ diffusion potential. J. Biol. Chem. 250, 90–93 (1975)

    PubMed  Google Scholar 

  • Haddock, B. A., Jones, C. W.: Bacterial respiration. Bacteriol. Rev. 41, 47–99 (1977)

    PubMed  Google Scholar 

  • Hamilton, W. A.: Energy coupling in microbial transport. Adv. Microb. Physiol. 12, 1–53 (1975)

    Google Scholar 

  • Harold, F. M.: Conservation and transformation of energy by bacterial membranes. Bacteriol. Rev. 36, 172–230 (1972)

    PubMed  Google Scholar 

  • Harold, F. M., Baarda, J. R.: Inhibition of membrane transport in Streptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction. J. Bacteriol. 96, 2025–2034 (1968)

    PubMed  Google Scholar 

  • Larsen, S. H., Adler, J., Gargus, J. J., Hogg, R. W.: Chemo-mechanical coupling without ATP. The source of energy for motility and chemotaxis in bacteria. Proc. Nat. Acad. Sci. U.S.A. 71, 1239–1243 (1974)

    Google Scholar 

  • Leiser, M., Gromet-Elhanan, Z.: Comparison of the electrochemical proton gradient and phosphate potential maintained by Rhodospirillum rubrum chromatophores in the steady state. Arch. Biochem. Biophys. 178, 79–88 (1977)

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    PubMed  Google Scholar 

  • Maloney, P. C., Wilson, T. H.: ATP synthesis driven by a protonmotive force in Streptococcus lactis. J. Membrane Biol. 25, 285–310 (1975)

    Google Scholar 

  • Manson, M. D., Tedesco, P., Berg, H. C., Harold, F. M., van der Drift, C.: A protonmotive force drives bacterial flagella. Proc. Nat. Acad. Sci. U.S.A. 74, 3060–3064 (1977)

    Google Scholar 

  • Matsuura, S., Shioi, J.-I., Imae, Y.: Motility in Bacillus subtilis driven by an artificial proton motive force. FEBS Lett. 82, 187–190 (1977)

    PubMed  Google Scholar 

  • Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41, 445–502 (1966)

    Article  PubMed  Google Scholar 

  • Moyle, J., Mitchell, P.: Proton translocation quotient for the adenosine triphosphatase of rat liver mitochondria. FEBS Lett. 30, 317–320 (1973).

    PubMed  Google Scholar 

  • Nicholls, D. G.: The influence of respiration and ATP hydrolysis on the proton electrochemical gradient across the inner membrane of rat liver mitochondria as determined by ion distribution. Eur. J. Biochem. 50, 305–315 (1974)

    PubMed  Google Scholar 

  • Panet, R., Sanadi, D. R.: Soluble and membrane ATPase of mitochondria, chloroplasts and bacteria: molecular structure, enzymatic properties, and functions. Curr. Top. Membr. Transp. 8, 99–160 (1976)

    Google Scholar 

  • Riebeling, V., Jungermann, K.: Properties and function of clostridial membrane ATPase. Biochim. Biophys. Acta 430, 434–444 (1976)

    PubMed  Google Scholar 

  • Rosing, J., Slater, E. C.: The value of Δ Go for the hydrolysis of ATP. Biochim. Biophys. Acta 267, 275–290 (1972)

    PubMed  Google Scholar 

  • Rottenberg, H.: The measurement of transmembrane electrochemical proton gradients. J. Bioenerg. 7, 61–74 (1975)

    PubMed  Google Scholar 

  • Sone, N., Yoshida, M., Hirata, H., Kagawa, Y.: Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium. J. Biol. Chem. 252, 2956–2960 (1977)

    PubMed  Google Scholar 

  • Sun, I. L., Phelps, D. C., Crane, F. L.: Lipophilic chelator inhibition of Escherichia coli membrane-bound ATPase activity and prevention of inhibition by uncouplers. FEBS Lett. 54, 253–258 (1975)

    PubMed  Google Scholar 

  • Szmelcman, S., Adler, J.: Change in membrane potential during bacterial chemotaxis. Proc. Nat. Acad. Sci. U.S.A. 73, 4387–4391 (1976)

    Google Scholar 

  • Tsuchiya, T., Rosen, B. P.: ATP synthesis by an artificial proton gradient in right-side-out membrane vesicles of Escherichia coli. Biochem. Biophys. Res. Commun. 68, 497–502 (1976)

    PubMed  Google Scholar 

  • van der Drift, C., Duiverman, J., Bexkens, H., Krijnen, A.: Chemotaxis of a motile Streptococcus toward sugars and amino acids. J. Bacteriol. 124, 1142–1147 (1975)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Drift, C., Janssen, D.B. & van Wezenbeek, P.M.G.F. Hydrolysis and synthesis of ATP by membrane-bound ATPase from a motile Streptococcus . Arch. Microbiol. 119, 31–36 (1978). https://doi.org/10.1007/BF00407924

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00407924

Key words

Navigation