Skip to main content
Log in

Fumarate reductase of Clostridium formicoaceticum

A peripheral membrane protein

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

When Clostridium formicoaceticum was grown on fumarate or l-malate crude cell extracts contained a high fumarate reductase activity. Using reduced methyl viologen as electron donor the specific activity amounted to 2–3.5 U per mg of protein. Reduced benzyl viologen, FMNH2 and NADH could also serve as electron donors but the specific activities were much lower. The NADH-dependent activity was strictly membrane-bound and rather labile. Its specific activity did not exceed 0.08 U per mg of particle protein. Fumarate reductase activity was also found in cells of C. formicoaceticum grown on fructose, gluconate, glutamate and some other substrates.

The methyl viologen-dependent fumarate reductase activity could almost completely be measured with intact cells whereas only about 25% of the cytoplasmic acetate kinase activity was detected with cell suspensions. The preparation of spheroplasts from cells of C. formicoaceticum in 20 mM HEPES-KOH buffer containing 0.6 M sucrose and 1 mM dithioerythritol resulted in the specific release of 88% of the fumarate reductase activity into the spheroplast medium. Only small amounts of the cytoplasmic proteins malic enzyme and acetate kinase were released during this procedure. These results indicate a peripheral location of the fumarate reductase of C. formicoaceticum on the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HEPES:

N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic acid

O.D:

optical density

DTE:

dithioerythritol

References

  • Andreesen, J. R., Gottschalk, G., Schlegel, H. G.: Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Mikrobiol. 72, 154–174 (1970)

    PubMed  Google Scholar 

  • van der Beek, E. G., Oltmann, L. F., Stouthamer, A. H.: Fumarate reduction in Proteus mirabilis. Arch. Microbiol. 110, 195–206 (1976)

    PubMed  Google Scholar 

  • Beisenherz, G., Boltze, H. J., Bücher, Th., Czok, R., Garbade, K. H., Meyer-Arendt, E., Pfleiderer, G.: Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. Naturforsch 8b, 555–577 (1953)

    Google Scholar 

  • Bell, G. R., LeGall, J., Peck, H. D., Jr.: Evidence for the periplasmic location of hydrogenase in Desulfovibrio gigas. J. Bacteriol. 120, 994–997 (1974)

    PubMed  Google Scholar 

  • Bernath, P., Singer, T. P.: Succinic dehydrogenase. In: Methods in enzymology (S. P. Colowick, N. O. Kaplan, eds.), Vol. 5, pp. 597–614. New York: Academic Press 1962

    Google Scholar 

  • Burke, K. A., Lascelles, J.: Nitrate reductase system in Staphylococcus aureus wild type and mutants. J. Bacteriol., 123, 308–316 (1975)

    PubMed  Google Scholar 

  • Dorn, M.: Vergärung von Fumarat und l-Malat durch Clostridium formicoaceticum, PhD Thesis, Univ. Göttingen (1976)

  • Dorn, M., Andreesen, J. R., Gottschalk, G.: Fermentation of fumarate and l-malate by Clostridium formicoaceticum. J. Bacteriol. 133, 26–32 (1978)

    PubMed  Google Scholar 

  • Gottwald, M., Andreesen, J. R., LeGall, J., Ljungdahl, L. G.: Presence of cytochrome and menaquinone in Clostridium formicoaceticum and Clostridium thermoaceticum. J. Bacteriol. 122, 325–328 (1975)

    PubMed  Google Scholar 

  • Harris, M. A., Reddy, C. A.: Hydrogenase activity and the H2-fumarate electron transport system in Bacteroides fragilis. J. Bacteriol. 131, 922–928 (1977)

    PubMed  Google Scholar 

  • Hatchikian, E. C., LeGall, J.: Etude du métabolisme des acides dicarboxyliques et du pyruvate chez les bactéries sulfatoréductrices. II. Transport des électrons; accepteurs finaux. Ann. Inst. Pasteur 118, 288–301 (1970)

    Google Scholar 

  • Heppel, L. A.: The concept of periplasmic encymes. In: Structure and function of biological membranes (L. I. Rothfield, ed.), pp. 223–247. New York: Academic Press 1971

    Google Scholar 

  • Hill, R. L., Bradshaw, R. A.: Fumarase. In: Methods in enzymology (S. P. Colowick, N. O. Kaplan, eds.), Vol. 13, pp. 91–99. New York: Academic Press 1969

    Google Scholar 

  • von Hugo, H., Gottschalk, G.: Purification and properties of 1-phosphofructokinase from Clostridium pasteurianum. Eur. J. Biochem. 48, 455–463 (1974)

    PubMed  Google Scholar 

  • Jones, R. W., Garland, P. B.: Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane. Biochem. J. 164, 199–211 (1977)

    PubMed  Google Scholar 

  • Kenney, W. C., Kröger, A.: The covalently bound flavin of Vibrio succinogenes succinate dehydrogenase. FEBS Lett. 73, 239–243 (1977)

    PubMed  Google Scholar 

  • Kröger, A.: Phosphorylative electron transport with fumarate and nitrate as terminal hydrogen acceptors. In: Microbial energetics (B. A. Haddock, W. A. Hamilton, eds.). Soc. Gen Microbiol. Symposium 27, pp. 61–93. Cambridge: Cambridge University Press 1977

    Google Scholar 

  • Kröger, A., Innerhofer, A.: The function of menaquinone, covalently bound FAD and iron-sulfur protein in the electron transport from formate to fumarate of Vibrio succinogenes. Eur. J. Biochem. 69, 487–495 (1976a)

    Google Scholar 

  • Kröger, A., Innerhofer, A.: The function of the b cytochromes in the electron transport from formate to fumarate of Vibrio succinogenes. Eur. J. Biochem. 69, 497–506 (1976b)

    Google Scholar 

  • Leonhardt, U., Andreesen J. R.: Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum. Arch. Microbiol. 115, 277–284 (1977)

    PubMed  Google Scholar 

  • Macy, J., Probst, I., Gottschalk, G.: Evidence for cytochrome involvement in fumarate reduction and adenosine-5′-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin. J. Bacteriol. 123, 436–442 (1975)

    PubMed  Google Scholar 

  • Mauck, I., Glaser, L.: Periplasmic nucleoside diphosphate sugar hydrolase from Bacillus subtilis. Biochem. 9, 1140–1147 (1970)

    Google Scholar 

  • Miller, I. D. A., Neumann, P. M., Elford, L., Wakerley, D. S.: Malate dismutation by Desulfovibrio. Arch. Mikrobiol. 71, 214–219 (1970)

    PubMed  Google Scholar 

  • Miller, I. D. A., Wakerley, D. S.: Growth of sulfate-reducing bacteria by fumarate. J. Gen. Microbiol. 43, 101–107 (1966)

    PubMed  Google Scholar 

  • Mountfort, D. O., Roberton, A. M.: The role of menaquinone and b-type cytochrome in anaerobic reduction of fumarate by NADH in membrane preparations from Bacteroides ruminicola strain B14. J. Gen. Microbiol. 100, 309–317 (1977)

    Google Scholar 

  • Peck, H. D., Smith, H. O., Gest, H.: Comparative biochemistry of the biological reduction of fumaric acid. Biochim. Biophys. Acta 25, 142–147 (1957)

    PubMed  Google Scholar 

  • Schaupp, A., Ljungdahl, L. G.: Purification and properties of acetate kinase from Clostridium thermoaceticum. Arch. Microbiol. 100, 121–129 (1974)

    PubMed  Google Scholar 

  • Singer, S. J.: The molecular organization of membranes. Ann. Rev. Biochem. 43, 805–833 (1974)

    PubMed  Google Scholar 

  • Singh, A. P., Bragg, P. D.: Reduced nicotinamide adenine dinucleotide dependent reduction of fumarate coupled to membrane energization in a cytochrome deficient mutant of Escherichia coli K12. Biochim. Biophys. Acta 396, 229–241 (1975)

    PubMed  Google Scholar 

  • Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)

    PubMed  Google Scholar 

  • Veeger, C., DerVartanian, D. V., Zeylemaker, W. P.: Succinate dehydrogenase. In: Methods in enzymology (S. P. Colowick, N. O. Kaplan, eds.), Vol. 13, pp. 81–90. London-New York: Academic Press 1969

    Google Scholar 

  • de Vries, W., van Wyck-Kapteyn, W. M. C., Stouthamer, A. H.: Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria. J. Gen. Microbiol. 76, 31–41 (1973)

    PubMed  Google Scholar 

  • Warringa, G. P. J., Smith, O. H., Giuditta, A., Singer, T. P.: Studies on succinic dehydrogenase. VIII. Isolation of succinic dehydrogenase-fumaric reductase from an obligate anaerobe. J. Biol. Chem. 230, 97–109 (1958)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorn, M., Andreesen, J.R. & Gottschalk, G. Fumarate reductase of Clostridium formicoaceticum . Arch. Microbiol. 119, 7–11 (1978). https://doi.org/10.1007/BF00407920

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00407920

Key words

Navigation