Skip to main content
Log in

Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg), growing on hydrogen and sulfate as sole energy source

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Desulfovibrio vulgaris (Marburg) was grown on hydrogen plus sulfate as sole energy source and acetate plus CO2 as the sole carbon sources. The incorporation of U-14C acetate into alanine, aspartate, glutamate, and ribose was studied. The labelling data show that alanine is synthesized from one acetate (C-2 + C-3) and one CO2 (C-1), aspartate from one acetate (C-2 + C-3) and two CO2 (C-1 + C-4), glutamate from two acetate (C-1−C-4) and one CO2 (C-5), and ribose from 1.8 acetate and 1.4 CO2. These findings indicate that in Desulfovibrio vulgaris (Marburg) pyruvate is formed via reductive carboxylation of acetyl-CoA, oxaloacetate via carboxylation of pyruvate or phosphoenol pyruvate, and α-ketoglutarate from oxaloacetate plus acetyl-CoA via citrate and isocitrate. Since C-5 of glutamate is derived from CO2, citrate must have been formed via a (R)-citrate synthase rather than a(S)-citrate synthase. The synthesis of ribose from 1.8 mol of acetate and 1.4 mol of CO2 excludes the operation of the Calvin cycle in this chemolithotrophically growing bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, M., Barton, L.: Evidence for the presence of phosphoriboisomerase and ribulose-1,5-diphosphate carboxylase in extracts of Desulfovibrio vulgaris. J. Bacteriol. 131, 133–135 (1977)

    PubMed  Google Scholar 

  • Andrew, I. G., Morris, J. G.: The biosynthesis of alanine by Clostridium kluyveri. Biochim. Biophys. Acta 97 176–179 (1965)

    PubMed  Google Scholar 

  • Aronoff, S.: Techniques of radiobiochemistry, p. 141. Iowa: Iowa State College Press 1956

    Google Scholar 

  • Badziong, W., Thauer, R. K., Zeikus, J. G.: Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch. Microbiol. 116, 41–49 (1978)

    PubMed  Google Scholar 

  • Badziong, W., Thauer, R. K.: Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch. Microbiol. 117, 209–214 (1978)

    PubMed  Google Scholar 

  • Balch, W. E., Schobert, S., Tanner, R. S., Wolfe, R. S.: Acetobacterium, a new genus of hydrogen-oxidizing carbon dioxidereducing anacrobes. Int. J. Syst. Bacteriol. 27, 355–361 (1977)

    Google Scholar 

  • Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem. 1, 279–285 (1960)

    Google Scholar 

  • Bryant, M. P., Tzeng, S. F., Robinson, I. M., Joyner, A. E.: Nutrient requirements of methanogenic bacteria. In: Anaerobic treatment processes. Advances in chemistry. Vol. 105 (F. G. Pohland, ed.), pp. 23–40. Washington, D.C.: Amer. Chem. Soc. 1971

    Google Scholar 

  • Bryant, M. P., Wolin, E. A., Wolin, M. J., Wolfe, R. S.: Methanobacterium omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol. 59, 20–31 (1967)

    Google Scholar 

  • Buchanan, B. B.: Ferredoxin and carbon assimilation. In: Iron sulfur proteins, Vol. 1 (W. Lovenberg, ed.), pp. 129–150 New York-London: Academic Press 1973

    Google Scholar 

  • Cutinelli, C., Ehrensvärd, G., Höström, G., Reio, L., Saluste, E., Sternholm, R.: Acetic acid metabolism in Rhodospirillum rubrum under anaerobic conditions. Ark. Kem 3, 501–509 (1951)

    Google Scholar 

  • Decker, K., Thauer, R. K., Jungermann, K.: Die Kohlenhydratsynthese in Clostridium kluyveri. I. Isotopenversuche zur Biosynthese der Ribose. Biochem. Z. 345, 461–471 (1966)

    Google Scholar 

  • Decker, K., Jungermann, K., Thauer, R. K.: Energy production in anaerobic organisms. Angew. Chem. Int. Ed. Engl. 9, 138–158 (1970)

    Article  PubMed  Google Scholar 

  • Ehrenberg, L., Fedoresak, I., Solymosy, F.: Diethyl pyrocarbonate in nucleic acid research. In: Progress in nucleic acid research and molecular biology (W. E. Cohn, ed.), pp. 189–262 New York: Academic Press 1976

    Google Scholar 

  • Evans, M. C. W., Buchanan, B. B., Arnon, D. I.: A new feredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Nat. Acad. Sci. 55, 928–934 (1966)

    PubMed  Google Scholar 

  • Fuchs, G., Stupperich, E., Thauer, R. K.: Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch. Microbiol. 117, 61–66 (1978)

    PubMed  Google Scholar 

  • Fuchs, G., Stupperich, E.: Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum. Arch. Microbiol. 118, 121–125 (1978)

    PubMed  Google Scholar 

  • Gottschalk, G.: The stereospecificity of the citrate synthase in sulfate-reducing and photosynthetic bacteria. Eur. J. Biochem. 5, 346–351 (1968)

    PubMed  Google Scholar 

  • Gottschalk, G., Barker, H. A.: Synthesis of glutamate and citrate by Clostridium kluyveri. A new type of citrate synthase. Biochemistry 5, 1125–1133 (1966)

    PubMed  Google Scholar 

  • Hoare, D. S.: The photoassimilation of acetate by Rhodospirillum rubrum. Biochem. J. 87, 284–301 (1963)

    PubMed  Google Scholar 

  • Hoare, D. S., Gibson, L.: Photoassimilation of acetate and the biosynthesis of amino acids by Chlorobium thiosulfatophilum. Biochem. J. 91, 546–559 (1964)

    PubMed  Google Scholar 

  • Hohorst, H. J.: L-(±)-Lactat-Bestimmung mit Lactat-Dehydrogenase und NAD. In: Methoden der enzymatischen Analyse, Vol. 2 (H. U. Bergmeyer, ed.), pp. 1425–1429, Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Kelly, D. P.: Autotrophy: Concepts of lithotrophic bacteria and their organic metabolism. Ann. Rev. Microbiol. 25, 177–210 (1971)

    Article  Google Scholar 

  • Kemble, A. R., MacPherson, H. T.: Determination of monoamino monocarboxylic acids by quantitative paper chromatography. Biochem. J. 56, 548–555 (1954)

    PubMed  Google Scholar 

  • Knight, M., Wolfe, R. S., Elsden, S. R.: The synthesis of amino acids by Methanobacterium omelianskii. Biochem. J. 99, 76–86 (1966)

    PubMed  Google Scholar 

  • Mejbaum, W.: Über die Bestimmung kleiner Pentosemengen insbesondere in Derivaten der Adenylsäure. Hoppe-Syler's Z. Physiol. Chem. 258, 117–120 (1939)

    Google Scholar 

  • Pfennig, N., Biebl, H.: Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing acetate-oxidizing bacterium. Arch. Microbiol 110, 3–12 (1976)

    PubMed  Google Scholar 

  • Quandt, L., Pfennig, N., Gottschalk, G.: Evidence for the key position of pyruvate synthase in the assimilation of CO2 by Chlorobium. FEMS letters 3, 227–230 (1978)

    Article  Google Scholar 

  • Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T., Britton, R. J.: Studies of biosynthesis in Escherichia coli. Carnegie Institute, Washington (1957)

    Google Scholar 

  • Rozanova, E. P., Khudyakova, A. L.: A new nonspore-forming thermophilic sulfate-reducing organism, Desulfovibrio thermophilus nov. sp. [Engl. trans..]. Microbiology (USSR) 43, 908–912 (1975)

    Google Scholar 

  • Simon, H., Floss, H. G.: Anwendung von Isotopen in der Organischen Chemie und Biochemie, Vol. 2, pp. 8–10, pp. 23ff., pp. 55ff. Berlin, Heidelberg, New York. Springer 1967

    Google Scholar 

  • Smith, A. J., Hoare, D. S.: Specialist phototrophs, lithotrophs, and methylotrophs: a unity among a diversity of procaryotes? Bacteriol. Rev. 41, 419–448 (1977)

    PubMed  Google Scholar 

  • Sorokin, Yu. I.: Sources of energy and carbon for biosynthesis in sulfate-reducing bacteria [Engl. Transl.]. Microbiology (USSR) 35, 643–647 (1966a)

    Google Scholar 

  • Sorokin, Yu: Investigations of the structural metabolism of sulfatereducing bacteria with 14C [Engl. Transl.]. Microbiology (USSR) 35, 806–814 (1966b)

    Google Scholar 

  • Sorokin, Yu. I.: Role of carbon dioxide in the biosynthesis by sulphate reducing bacteria. Nature 210, 551–552 (1966c)

    PubMed  Google Scholar 

  • Stegemann, H.: Bestimmung von Aminosäuren mit dithionit-reduziertem Ninhydrin. Hoppe-Seyler's Z. Physiol. Chem. 319, 102–109 (1960)

    Google Scholar 

  • Thauer, R. K., Jungermann, K., Decker, K.: A quantitative isotope method for regulation studies of aromatic amino acid synthesis under growth conditions. Eur. J. Biochem. 1, 482–486 (1967)

    PubMed  Google Scholar 

  • Tomlinson, N.: Carbon dioxide and acetate utilization by Clostridium kluyveri. II. Synthesis of amino acids. J. Biol. Chem. 209, 597–603 (1954a)

    PubMed  Google Scholar 

  • Tomlinson, N.: Carbon dioxide and acetate utilization by Clostridium kluyveri. III. A new path of glutamic acid synthesis. J. Biol. Chem. 209, 605–609 (1954b)

    PubMed  Google Scholar 

  • Tomlinson, N., Barker, H. A.: Carbon dioxide and acetate utilisation by Clostridium kluyveri. I. Influence of nutritional conditions on utilisation patterns. J. Biol. Chem. 209, 585–595 (1954)

    PubMed  Google Scholar 

  • Vischer, E., Chargaff, E.: The composition of the pentose nucleic acids of yeast and pancreas. J. Biol. Chem. 176, 715–734 (1948)

    Google Scholar 

  • Weimer, P. J., Zeikus, G.: Acetate assimilation pathway of Methanosarcina barkeri. J. Bacteriol. 137, 332–339 (1979)

    PubMed  Google Scholar 

  • Widdel, F., Pfennig, N.: A new anaerobic sporing acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum acetoxidans. Arch. Microbiol. 112, 119–122 (1977)

    PubMed  Google Scholar 

  • Wolfe, R. S., Pfennig, N.: Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl. Environ. Microbiol. 33, 427–433 (1977)

    PubMed  Google Scholar 

  • Zeikus, J. G., Fuchs, G., Kenealy, W., Thauer, R. K.: Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J. Bacteriol. 132, 604–613 (1977)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badziong, W., Ditter, B. & Thauer, R.K. Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg), growing on hydrogen and sulfate as sole energy source. Arch. Microbiol. 123, 301–305 (1979). https://doi.org/10.1007/BF00406665

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406665

Key words

Navigation