Skip to main content
Log in

Species specific release of sulfate from adenylyl sulfate by ATP sulfurylase or ADP sulfurylase in the green sulfur bacteria Chlorobium limicola and Chlorobium vibrioforme

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

High activities of ATP sulfurylase were found in the soluble protein fraction of two Chlorobium limicola strains, whereas ADP sulfurylase was absent. ATP sulfurylase was partially purified and characterized. It was a stable soluble enzyme with a molecular weight of 230,000, buffer-dependent pH optima at 8.6 and 7.2 and an isoelectric point at pH 4.8. No physiological inhibitor was found. Inhibition was observed with p-CMB and heavy metals. Sulfur compounds had no effect on enzyme activity. The stoichiometry of the reaction was proven. In contrast, an ADP sulfurylase, but no ATP sulfurylase, was found in Chlorobium vibrioforme. This enzyme was very labile with a molecular weight of about 120,000 and buffer-dependent pH optima at 9.0 and 8.5. Under test conditions the apparent K m value was determined to be 0.28 mM for adenylyl sulfate and 8.0 mM for phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APS:

adenylyl sulfate

p-CMB:

parachloromercuribenzoate

PPi :

inorganic pyrophosphate

References

  • Adams CA, Johnson RE (1968) ATP-sulfurylase activity in the soybean [Glycine max (L) merr]. Plant Physiol 43:2041–2044

    Google Scholar 

  • Akagi JM, Campbell LL (1963) Inorganic pyrophosphatase of Desulfovibrio desulfuricans. J Bacteriol 86:563–568

    PubMed  Google Scholar 

  • Aminuddin M (1980) Substrate level versus oxidative phosphorylation in the generation of ATP in Thiobacillus denitrificans. Arch Microbiol 128:19–25

    PubMed  Google Scholar 

  • Baldensperger J, Garcia JL (1975) Reduction of oxidized inorganic nitrogen compounds by a new strain of Thiobacillus denitrificans. Arch Microbiol 103:31–36

    PubMed  Google Scholar 

  • Beisenherz G, Boltze HJ, Bücher T, Czok R, Garbade KH, Meyer-Arendt E, Pfleiderer G (1952) Diphosphofructose-Aldolase, Phosphoglycerinaldehyd-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskel in einem Arbeitsgang. Z Naturforsch 8b:555–577

    Google Scholar 

  • Bergmeyer HU (1970) Adenylatkinase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, 2nd edn., vol 1. Verlag Chemie, Weinheim, pp 447–448

    Google Scholar 

  • Betz A (1974) Enzyme. Verlag Chemie, Weinheim

    Google Scholar 

  • Brückenhaus I (1977) Sulfitoxidasen bei einigen Arten phototropher Schwefelbakterien. Diploma thesis, University of Bonn

  • Brückenhaus-Kruhl I (1985) Enzyme der Sulfitoxidation bei phototrophen Bakterien der Gattung Chromatium und Ectothiorhodospira. Doctoral thesis, University of Bonn

  • Cooper BP, Trüper HG (1979) Improved synthesis and rapid isolation of millimole quantities of adenylylsulfate. Z Naturforsch 34c:346–349

    Google Scholar 

  • Cooper BP, Trüper HG (1985) Sulfate activation in Rhodobacter sulfidophilus and other species of the Rhodospirillaceae. Arch Microbiol 141:384–391

    Google Scholar 

  • Gibson J, Ludwig W, Stackebrandt E, Woese CR (1985) The phylogeny of the green photosynthetic bacteria: absence of a close relationship between Chlorobium and Chloroflexus. System Appl Microbiol 6:152–156

    Google Scholar 

  • Grunberg-Manago M, Del Campillo-Campell A, Dondon L, Michelson AM (1966) ADP-sulfurylase de levure catalysant un exchange entre l'orthophosphate et le phosphate terminal des nucleotides diphosphates. Biochim Biophys Acta 123:1–16

    PubMed  Google Scholar 

  • Hawes CS, Nicholas DJD (1973) Adenosine 5′-triphosphate sulfurylase from Saccharomyces cerevisiae. Biochem J 133: 541–550

    PubMed  Google Scholar 

  • Imhoff JF (1982) Occurrence and evolutionary significance of two sulfate assimilation pathways in the Rhodospirillaceae. Arch Microbiol 132:197–203

    Google Scholar 

  • Khanna S, Nicholas DJD (1982) Utilization of tetrathionate and 35S-labelled thiosulfate by washed cells of Chlorobium vibrioforme f. sp. thiosulfatophilum. J Gen Microbiol 128: 1027–1034

    Google Scholar 

  • Khanna S, Nicholas DJD (1983) Substrate phosphorylation in Chlorobium vibrioforme f. sp. thiosulfatophilum. J Gen Microbiol 129:1365–1370

    Google Scholar 

  • Kirchhoff J, Trüper HG (1974) Adenylylsulfate reductase of Chlorobium limicola. Arch Microbiol 100:115–120

    Google Scholar 

  • Krasilnikova EN (1986) ATP-sulfurylase activity in Chloroflexus aurantiacus and other photosynthetic bacteria as a function of temperature. Microbiologiya 55:543–547

    Google Scholar 

  • Levi AS, Wolf G (1969) Purification and properties of the enzyme ATP-sulfurylase and its relationship to vitamin A. Biochim Biophys Acta 178:262–282

    PubMed  Google Scholar 

  • Lippert KD, Pfennig N (1969) Die Verwertung von molekularem Wasserstoff durch Chlorobium thiosulfatophilum. Arch Mikrobiol 65:29–47

    PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RT (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  • Peck HD (1960) Adenosine 5′-phosphosulfate as an intermediate in the oxidation of thiosulfate by Thiobacillus thioparus. Proc Natl Acad Sci USA 46:1053–1057

    Google Scholar 

  • Peck HD (1961) Evidence for the reversibility of the reaction catalysed by the adenosine 5′-phosphosulfate reductase. Biochim Biophys Acta 49:621–624

    PubMed  Google Scholar 

  • Pfennig N (1965) Anreicherungskulturen für rote und grüne Schwefelbakterien. In: Schlegel HG, Kröger E (eds) Anreicherungskultur und Mutanenauslese. Fischer, Stuttgart, pp 179–189

    Google Scholar 

  • Saunders GF, Campbell LL, Postgate JR (1964) Base composition of deoxyribonucleic acid of sulfate reducing bacteria from buoyant density measurement in cesium chloride. J Bacteriol 87:1073–1078

    PubMed  Google Scholar 

  • Schedel M (1977) Untersuchungen zur anaeroben Oxidation reduzierter Schwefelverbindungen durch Thiobacillus denitrificans, Chromatium vinosum und Chlorobium limicola. Doctoral thesis, University of Bonn

  • Schug A (1979) Anreicherung und Charakterisierung der ADP-Sulfurylase aus Thiobacillus denitrificans. Diploma thesis, University of Bonn

  • Steinmetz M (1984) Cytochrome und Eisen-Schwefel-Proteine in Chlorobiaceae Arten. Doctoral thesis, University of Bonn

  • Taussky HH, Shorr E (1953) A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202:675–685

    PubMed  Google Scholar 

  • Trüper HG, Peck HD (1970) Formation of adenylylsulfate in photosynthetic bacteria. Arch Mikrobiol 73:125–142

    PubMed  Google Scholar 

  • Tuovinen OH, Kelly BC, Nicholas DJD (1976) Enzymatic comparison of the inorganic sulfur metabolism in autotrophic and heterotrophic Thiobacillus ferrooxidans. Can J Microbiol 22:109–113

    PubMed  Google Scholar 

  • Ulbricht HM (1985) Aspekte des Energiegewinns durch Substratphosphorylierung im Zuge der Sulfitoxidation bei Chromatiaceae und Thiobacillus denitrificans. Doctoral thesis, University of Bonn

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bias, U., Trüper, H.G. Species specific release of sulfate from adenylyl sulfate by ATP sulfurylase or ADP sulfurylase in the green sulfur bacteria Chlorobium limicola and Chlorobium vibrioforme . Arch. Microbiol. 147, 406–410 (1987). https://doi.org/10.1007/BF00406141

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406141

Key words

Navigation