Skip to main content
Log in

Sodium-MR-imaging of the brain: initial clinical results

  • Originals
  • Published:
Neuroradiology Aims and scope Submit manuscript

Summary

Twelve patients with different diseases of the brain were examined with sodium and proton MRI at 1.5 Tesla and the results of both studies compared. Due to the 1500-fold lower concentration in the body, the decreased sensitivity and the shorter relaxation times of sodium compared with hydrogen a sequence with gradient reversal and a volume imaging method was applied to achieve a short echo time (4.5 ms). As a result of the mainly extracellular distribution of sodium the CSF spaces are depicted by their high signal intensity while the normal parenchyma is not visible. Changes induced by encephalitis, ischemic infarction and tumors can also be detected by their increased sodium content. Different tumors provided different signal intensities, not always permitting a distinction between tumor, surrounding edema and CSF. The diagnostic impact of these findings is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leibfritz D (1987) 31P-NMR-Spektroskopie an Zellen, Organen und Organismen. In: „Forschung im Dienste der Gesundheit” der DFVLR, Bonn (Hrsg) Materialien zur Gesundheitsforschung, Bd 4. Wirtschaftsverlag NW, Bremerhaven

    Google Scholar 

  2. Kalinowski H-O, Berger S, Braun S (1984) 13C-NRM-Spektroskopie. Thieme, Stuttgart New York

    Google Scholar 

  3. Lutz O, Erata T, Förster H, Müller D (1986) Multinuclear approach to nuclear magnetic resonance investigations in tissue with heteronuclei: 14N, 35Cl, 39K. Naturwissenschaften 73: 97–98

    Google Scholar 

  4. Itoh U, Ohno K, Nakaruma R, Suganama F, Inaba Y (1979) Brain edema during ischemia and after restoration of blood flow. Measurements of water sodium, potassium content and plasma protein permeability. Stroke 10: 542–547

    Google Scholar 

  5. Gotoh O, Asano T, Koide T, Takakura K (1985) Ischemic brain edema following occlusion of the middle cerebral artery in the rat. I: The time course of the brain water, sodium and potassium contents and blood-brain barrier permeability to 125J-Albumin. Stroke 16: 101–109

    Google Scholar 

  6. Cameron IL, Smith NRK, Pool TB, Sparks RL (1980) Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res 40: 1493–1500

    Google Scholar 

  7. Zs-Nagy I, Lustyik G, Lukas G, Zs-Nagy V, Balazs G (1983) Correlation of malignancy with the intracellular Na+:K+ ratio in human thyroid tumors. Cancer Res 43: 5395–5402

    Google Scholar 

  8. Cope FW (1970) Spin-Echo nuclear magnetic resonance evidence for complexing of sodium ions in muscle, brain, and kidney. Biophys J 10: 843–858

    Google Scholar 

  9. Brändle U, Kammerer E, Lutz O (1984) 23Na nuclear magnetic resonance relaxation times in pig tissue. Z Naturforsch 39a: 615–616

    Google Scholar 

  10. Czeisler JL, Swift TJ (1973) A comparative study of sodium ion in muscle tissue and ion exchange resins through the application of nuclear magnetic resonance. Ann NY Acad Sci 204: 261–273

    Google Scholar 

  11. Berendsen HJC, Edzes HT (1973) The observation and general interpretation of sodium magnetic resonance in biological material. Ann NY Acad Sci 204: 459–485

    Google Scholar 

  12. Hilal SK, Maudsley AA, Ra JB, Simon HE, Roschmann P, Wittekoek S, Cho ZH, Mun SK (1985) In vivo imaging of sodium-23 in the human head. J Comput Assist Tomogr 9: 1–7

    Google Scholar 

  13. Feinberg D, Crooks LA, Kaufmann L, Brant-Zawadzki M, Posin JP, Arakawa M, Watts J, Hoenniger J (1985) Magnetic Resonance Imaging performance: A comparison of sodium and hydrogen. Radiology 156: 133–138

    Google Scholar 

  14. Perman WH, Turski PA, Houston LW, Glover GH, Hayes CE (1986) Methodology of in vivo human sodium MR imaging at 1.5 T. Radiology 160: 811–821

    Google Scholar 

  15. Perman WH, Thomasson DM, Bernstein MA, Sanderstrom JC, Turski PA (1987) Multiple short echo (2.5 ms) in vivo imaging of sodium 23: Quantification of short and long T2 components. Proc SMRM: 239–240

  16. Ra JB, Hilal SK, Oh CH (1986) Sodium magnetic resonance of the human body. Proc SMRM: 1462–1463

  17. Oh CH, Hilal SK, Ra JB, Mun JK, Cho ZH (1987) Gradient recalled echo sodium magnetic resonance by using plane integral projection reconstruction. Proc SMRM: 904

  18. Turski PA, Perman WH, Hald JK, Houston LW, Strother CM, Sackett JF (1986) Clinical and experimental vasogenic edema: In vivo sodium MR imaging. Work in progress. Radiology 160: 821–825

    Google Scholar 

  19. Turski PA, Houston LW, Perman WH, Hald JK, Turski D, Strother CM, Sackett JF (1987) Experimental and human brain neoplasm: Detection with in vivo sodium MR imaging. Radiology 163: 245–249

    Google Scholar 

  20. Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt KD (1986) FLASH imaging. Rapid NMR imaging using low flipangle pulses. J Magn Res 67: 258–266

    Google Scholar 

  21. Brunner P, Ernst RR (1979) Sensitivity and performance time in NMR imaging. J Magn Res 33: 83–106

    Google Scholar 

  22. Maudsley AA, Hilal SK (1984) Biological aspects of sodium-23 imaging. Br Med Bull 40: 165–166

    Google Scholar 

  23. Schroth G, Gawehn J, Thron A, Vallbracht A, Voigt K (1987) Early diagnosis of herpes simplex encephalitis by MRI. Neurology 37: 179–183

    Google Scholar 

  24. Damasio AR, Hoesen GW (1985) The limbic system and the localisation of herpes simplex encephalitis. J Neurol Neurosurg Psychiatry 48: 297–301

    Google Scholar 

  25. Brant-Zawadzki M, Weinstein P, Bartkowski H, Moseley M (1987) MR imaging and spectrocopy in clinical and experimental cerebral ischemia: A review. AJR 148: 579–588

    Google Scholar 

  26. Hilal SK, Ra JB, Oh CH, Mun IK, Roschmann P (1987) Clinical sodium imaging: Quantification of extra- and intracellular compartments in tumors. Proc SMRM: 243

  27. Perman WH, Thomasson DM, Bernstein MA, Sandstrom JC, Turski PA (1987) Multiple short echo (2.5 msec) in-vivo imaging of sodium 23: Quantification of short and long T3 components. Proc SMRM: 239–240

  28. Bottomley PA, Hardy CJ, Arsinger RE, Allen-Moore G (1987) A review of 1H nuclear magnetic resonance relaxation in pathology: Are T1 and T2 diagnostic? Med Phys 14: 1–33

    Google Scholar 

  29. Gullino PM, Grantham FH (1964) The vascular space of growing tumors. Cancer Res 24: 1727–1731

    Google Scholar 

  30. Gullino PM, Grantham FH, Smith SW (1965) The interstitial water space of tumors. Cancer Res 25: 727–731

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grodd, W., Klose, U. Sodium-MR-imaging of the brain: initial clinical results. Neuroradiology 30, 399–407 (1988). https://doi.org/10.1007/BF00404105

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00404105

Key words

Navigation