Skip to main content
Log in

Carbohydrate metabolism in lactic acid bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The term “lactic acid bacteria” is discussed. An overview of the following topics is given: main pathways of homo- and heterofermentation of hexoses, i.e. glycolysis, bifidus pathway, 6-phosphogluconate pathway; uptake and dissimilation of lactose (tagatose pathway); fermentation of pentoses and pentitols; alternative fates of pyruvate, i.e. splitting to formate and acetate, CO2 and acetate or formation of acetoin and diacetyl; lactate oxidation; biochemical basis for the formation of different stereoisomers of lactate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. G. and McKay, L. L. 1977. Plasmids, loss of lactose metabolism, and appearance of partial and full lactose-fermenting revertants in Streptococcus cremoris B1. — J. Bacteriol. 129, 367–377.

    Google Scholar 

  • Archibald, F. S. and Fridovich, I. 1981. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. — J. Bacteriol. 145: 442–451.

    Google Scholar 

  • Archibald, F. S. and Fridovich, I. 1982. The scavenging of superoxide radical by manganous complexes: in vitro. — Arch. Biochem. Biophys. 214: 452–463.

    Google Scholar 

  • Barre, P. 1978. Identification of thermobacteria and homofermentative, thermophilic, pentoseutilizing lactobacilli from high temperature fermenting grape musts. — J. Appl. Bacteriol. 44: 125–129.

    Google Scholar 

  • Bissett, D. L. and Anderson, R. L. 1974. Lactose and d-galactose metabolism in group N streptococci: presence of enzymes for both the d-galactose 1-phosphate and d-tagatose 6-phosphate pathways. — J. Bacteriol. 117: 318–320.

    Google Scholar 

  • Brown, J. P. and VanDemark, P. J. 1968. Respiration of Lactobacillus casei. — Can. J. Microbiol. 14: 829–835.

    Google Scholar 

  • Cori, C. F. and Cori, G. T. 1929. Glycogen formation in the liver from d- and l-lactic acid. —J. Biol. Chem. 81: 389–403.

    Google Scholar 

  • Crow, V. L., Davey, G. P., Pearce, L. E. and Thomas, T. D. 1983. Plasmid linkage of the d-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism. — J. Bacteriol. 153: 76–83.

    Google Scholar 

  • De Vries, W., Kapteijn, W. M. C., Van der Beek, E. G. and Stouthamer, A. H. 1970. Molar growth yields and fermentation balances of Lactobacillus casei 13 in batch cultures and in continuous cultures. — J. Gen. Microbiol. 63: 333–345.

    Google Scholar 

  • De Vries, W. and Stouthamer, A. H. 1968. Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria. — J. Bacteriol. 96: 472–478.

    Google Scholar 

  • Dirar, H. and Collins, E. B. 1972. End-products, fermentation balances and molar growth yields of homofermentative lactobacilli. — J. Gen. Microbiol. 73: 233–238.

    Google Scholar 

  • Dirar, H. and Collins, E. B. 1973. Aerobic utilization of low concentrations of galactose by Lactobacillus plantarum — J. Gen. Microbiol. 78: 211–215.

    Google Scholar 

  • Doelle, H. W. 1975. Bacterial Metabolism, 2nd ed. — Academic Press, New York.

    Google Scholar 

  • Dunlop, R. H. and Hammond, P. B. 1965. d-Lactic acidosis of ruminants. — Ann. N. Y. Acad. Sci. 119: 1109–1152.

    Google Scholar 

  • FAO/WHO 1967. Expert Committee on Food Additives. — WHO/Food Add. 29: 144–148.

    Google Scholar 

  • Fukui, S., Oi, A., Obayashi, A. and Kitahara, K. 1957. Studies on the pentose metabolism by microorganisms. I. A new type-lactic acid fermentation of pentoses by lactic acid bacteria. —J. Gen. Appl. Microbiol. 3: 258–268.

    Google Scholar 

  • Giesecke, D., Fabritius, A. and Van Wallenberg, P. 1981. A quantitative study on the metabolism of d(-) lactic acid in the rat and the rabbit. — Comp. Biochem. Physiol. 69B: 85–89.

    Google Scholar 

  • Gottschalk, G. 1979. Bacterial Metabolism.—Springer, New York.

    Google Scholar 

  • Götz, F., Elstner, E. F., Sedewitz, B. and Lengfelder, E. 1980a. Oxygen utilization by Lactobacillus plantarum. II. Superoxide and superoxide dismutation—Arch. Microbiol. 125: 215–220.

    Google Scholar 

  • Götz, F. and Lengfelder, E. 1983. On the mechanism of the catalytic scavenging of superoxide radical by manganese pyrophosphate: a pulse radiolysis study.—Proc. Third Intern. Conf. on Superoxide and Superoxide Dismutases, New York, in press.

  • Götz, F., Sedewitz, B. and Elstner, E. F. 1980b. Oxygen utilization by Lactobacillus plantarum. I. Oxygen consuming reactions.—Arch. Microbiol. 125: 209–214.

    Google Scholar 

  • Greenblatt, J. and Schleif, R. 1971. Arabinose C protein: regulation of the arabinose operon in vitro.—Nature New Biol. 233: 166–170.

    Google Scholar 

  • Gunsalus, I. C., Dolin, M. I. and Struglia, L. 1952. Pyruvic acid metabolism. III. A manometric assay for pyruvate oxidation factor.—J. Biol. Chem. 194: 849–857.

    Google Scholar 

  • Hager, L. P., Geller, D. M. and Lipmann, F. 1954. Flavoprotein-catalyzed pyruvate oxidation in Lactobacillus delbrueckii.—Fed. Proc. 13: 734–738.

    Google Scholar 

  • Hensel, R., Mayr, U., Lins, C. and Kandler, O. 1981. Amino acid sequence of a dodecapeptide from the substrate-binding region of the l-lactate dehydrogenase from Lactobacillus curvatus, Lactobacillus xylosus and Bacillus stearothermophilus.—Hoppe-Seyler's Z. Physiol. Chem. 362: 1031–1036.

    Google Scholar 

  • Hensel, R., Mayr, U., Stetter, K. O. and Kandler, O. 1977. Comparative studies of lactic acid dehydrogenases from Lactobacillus casei ssp. casei and Lactobacillus curvatus.—Arch. Microbiol. 112: 81–93.

    Google Scholar 

  • Höchst, M. 1979. Untersuchungen zur Laktatoxidation bei Lactobazillen. — Dissertation, Universität München.

  • Hontebeyrie, M. and Gasser, F. 1975. Comparative immunological relationships of two distinct sets of isofunctional dehydrogenases in the genus Leuconostoc.—Intern. J. System. Bacteriol. 25: 1–6.

    Google Scholar 

  • Ingram, M. 1975. The lactic acid bacteria—a broad view. p. 1–13. In J. G. Carr, C. V. Cutting, and G. C. Whiting (eds), Lactic Acid Bacteria in Beverages and Foods. Fourth Long Ashton Symposium 1973.—Academic Press, London.

    Google Scholar 

  • Irr, J. and Englesberg, E. 1970. Nonsense mutants in the regulator gene araC of the l-arabinose system of Escherichia coli B/r.—Genetics 65: 27–39.

    Google Scholar 

  • Johnson, K. G. and McDonald, I. J. 1974. β-d-Phosphogalactosicde galactohydrolase from Streptococcus cremoris HP: purification and enzyme properties.—J. Bacteriol. 117: 667–674.

    Google Scholar 

  • Jönsson, H. and Pettersson, H.-E. 1977. Studies on the citric acid fermentation in lactic starter cultures with special interest in α-aceto-lactic acid. 2. Metabolic studies.—Milchwissenschaft 32: 587–594.

    Google Scholar 

  • Kandler, O. 1981. Archaebakterien und Phylogenie der Organisment.—Naturwissenschaften 68: 183–192.

    Google Scholar 

  • Katz, L. 1970. Selection of araB and araC mutants of Escherichia coli b/r by resistance to ribitol. —J. Bacteriol. 102, 593–595.

    Google Scholar 

  • Kitahara, K., Obayashi, A. and Fukui, S. 1957. On the lactic acid recemase (racemiase) of lactic acid bacteria, with a special reference to the process of its formation.—Proc. Intern. Symp. Enzyme Chemistry, Tokyo and Kyoto, p. 460–463.

  • Kono, Y., Takahashi, M.-A. and Asada, K. 1976. Oxidation of manganous pyrophosphate by superoxide radicals and illuminated spinach chloroplasts.—Arch. Biochem. Biophys. 174: 454–462.

    Google Scholar 

  • Krusch, U. 1978. Ernährungsphysiologische Gesichtspunkte der l (+) und d (-)-Milchsäure.—Milchwirtsch. Forsch. Ber. 30: 341–346.

    Google Scholar 

  • Kunath, P. and Kandler, O. 1980. Der Gehalt und l(+)- und d(-)-Milchsãure in Joghurtprodukten. — Milchwissenschaft 35: 470–473.

    Google Scholar 

  • Lauer, E., Helming, Ch. and Kandler, O. 1980. Heterogeneity of the species Lactobacillus acidophilus (Moro) Hansen and Moquot as revealed by biochemical characteristics and DNA-DNA hybridisation.—Zbl. Bakt. Hyg., I. Abt. Orig. C 1: 150–168.

    Google Scholar 

  • Lauer, E. and Kandler, O. 1976. Mechanismus der Variation des Verhältnisses Acetat/Lactat bei der Vergärung von Glucose durch Bifidobakterien.—Arch. Microbiol. 110: 271–277.

    Google Scholar 

  • Lawrence, R. C. and Thomas, T. D. 1979. The fermentation of milk by lactic acid bacteria. p. 187–219. In A. T. Bull, D. C. Ellwood and C. Ratledge (eds), Microbial Technology: Current State, Future Prospects. Soc. Gen. Microbiol., Symp. 29.—University Press, Cambridge.

    Google Scholar 

  • London, J. 1968. Regulation and function of lactate oxidation in Streptococcus faecium.—J. Bacteriol. 95: 1380–1387.

    Google Scholar 

  • London, J. 1976. The ecology and taxonomic status of the lactobacilli.—Ann. Rev. Microbiol. 30: 279–301.

    Google Scholar 

  • London, J. and Chace, N. M. 1977. New pathway for the metabolism of pentitols.—Proc. Natl Acad. Sci. USA 74: 4296–4300.

    Google Scholar 

  • London, J. and Chace, N. M. 1979. Pentitol metabolism in Lactobacillus casei.—J. Bacteriol. 140: 949–954.

    Google Scholar 

  • London, J., Chase, N. M. and Kline, K. 1975. Aldolases of lactic acid bacteria: immunological relationships among aldolases of streptococci and gram-positive nonsporeforming anaerobes. —Intern. J. System. Bacteriol. 25: 114–123.

    Google Scholar 

  • Lumsden, J. and Hall, D. O. 1975. Chloroplast manganese and superoxide.—Biochem. Biophys. Res. Commun. 64: 595–602.

    Google Scholar 

  • Mayr, U., Hensel, R. and Kandler, O. 1982. Subunit composition and substrate binding region of potato l-lactate dehydrogenase.—Phytochemistry 21: 627–731.

    Google Scholar 

  • McKay, L., Miller III, A., Sandine, W. E. and Elliker, P. R. 1970. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.—J. Bacteriol. 102: 804–809.

    Google Scholar 

  • O'Kane, D. J. and Gunsalus, I. C. 1948. Pyruvic acid metabolism. A factor required for oxidation by Streptococcus faecalis.—J. Bacteriol. 56: 499–506.

    Google Scholar 

  • Orla-Jensen, S. 1919. The Lactic Acid Bacteria.—Anhr. Fred. Høst and Søn, Copenhagen.

    Google Scholar 

  • Postma, P. W. and Roseman, S. 1976. The bacterial phosphoenolpyruvate: sugar phosphotransferase system.—Biochim. Biophys. Acta 457: 213–257.

    Google Scholar 

  • Premi, L., Sandine, W. E. and Elliker, P. R. 1972. Lactose-hydrolyzing enzymes of Lactobacillus species.—Appl. Microbiol. 24: 51–57.

    Google Scholar 

  • Scardovi, V. 1982. The genus Bifidobacterium. p. 1951–1961. In M. P. Starr, H. Stolp, H. G. Trüper, A. Balows and H. G. Schlegel (eds), The Prokaryotes.—Springer, Berlin.

    Google Scholar 

  • Sheppard, D. and Englesberg, E. 1966. Positive control in the l-arabinose gene-enzyme complex of Escherichia B/r as exhibited with stable merodiploids—Cold Spring Harbor Symp. Quant. Biol. 31: 345–347.

    Google Scholar 

  • Sheppard, D. E. and Englesberg, E. 1967. Further evidence for positive control of the l-arabinose system by gene araC.—J. Mol. Biol. 25: 443–454.

    Google Scholar 

  • Snoswell, A. M. 1959. Flavins of Lactobacillus arabinossus 17.5. A lactic dehydrogenase containing a flavin prosthetic group.—Austr. J. Exp. Biol. 37: 49–64.

    Google Scholar 

  • Snoswell, A. M. 1963. Oxidized nicotinamide-adenine dinucleotide-independent lactate dehydrogenases of Lactobacillus arabinosus 17.5.—Biochim. Biophys. Acta 77: 7–19.

    Google Scholar 

  • Speck, M. L. 1976. Interactions among lactobacilli and man.—J. Dairy Sci. 59: 338–343.

    Google Scholar 

  • Speckman, R. A. and Collins, E. B. 1968. Diacety biosynthesis in Streptococcus diacetilactis and Leuconostoc citrovorum.—J. Bacteriol. 95: 174–180.

    Google Scholar 

  • Speckman, R. A. and Collins, E. B. 1973. Incorporation of radioactive acetate into diacetyl by Streptococcus diacetilactis.—Appl. Microbiol. 26, 744–746.

    Google Scholar 

  • Stackebrandt, E., Fowler, V. J. and Woese, C. R. 1983. A phylogenetic analysis of lactobacilli, Pediococcus pentosaceus and Leuconostoc mesenteroides.—System. Appl. Microbiol. 4: 326–337.

    Google Scholar 

  • Stackebrandt, E. and Woese, C. R. 1981. The evolution of prokaryotes. p. 1–31. In M. J. Carlile, J. F. Collins and B. E. B. Moseley (eds), Molecular and Cellular Aspects of Microbial Evolution. Soc. Gen. Microbiol., Symp. 32.—University Press, Cambridge.

    Google Scholar 

  • Stein, J., Fackler, J. P. Jr., Mc Clune, G. J., Fee, J. A. and Chan, L. T. 1979. Superoxide and manganese. III. Reactions of Mn-EDTA and Mn-CyDTA complexes with O2. X-ray structure of KMn-EDTA. 2H2O.—Inorg. Chem. 18: 3511–3519.

    Google Scholar 

  • Stetter, H. 1974. Biochemische und bakteriologische Untersuchungen zur Bewetung der Arabinosevergärung als taxonomisches Merkmal bei heterofermentativen Milchsäurebakterien.—Dissertation, Universität München.

  • Stetter, K. O. 1974. Production of exclusively l(+)-lactic acid containing food by controlled fermentation. —Proc. First Intersect. Congr. JAMS, Tokyo, Vol. 2, p. 164–168.

  • Stetter, K. O. and Kandler, O. 1973a. Untersuchungen zur Entstehung von dl-Milchäure bei Lactobacillen und Charakterisierung einer Milchsäureracemase bei einigen Arten der Untergattung Streptobacterium.—Arch. Mikrobiol. 94: 221–247.

    Google Scholar 

  • Stetter, K. O. and Kandler, O. 1973b. Manganese requirement of the transcription processes in Lactobacillus curvatus.—FEBS Lett. 36: 5–8.

    Google Scholar 

  • Stetter, K. O. and Zillig, W. 1974. Transcription in Lactobacillaceae. DNA-dependent RNA polymerase from Lactobacillus curvatus.—Eur. J. Biochem. 48: 527–540.

    Google Scholar 

  • Strittmatter, C. F. 1959a. Electron transport to oxygen in lactobacilli.—J. Biol. Chem. 234: 2789–2793.

    Google Scholar 

  • Strittmatter, C. F. 1959b. Flavin-linked oxidative enzymes of Lactobacillus casei.—J. Biol. Chem. 234: 2794–2800.

    Google Scholar 

  • Thomas, T. D. 1976. Regulation of lactose fermentation in group N streptococci.—Appl. Environ. Microbiol. 32: 474–478.

    Google Scholar 

  • Thompson, J. 1979. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo.—J. Bacteriol. 140: 774–785.

    Google Scholar 

  • Thompson, J. 1980. Galactose transport systems in Streptococcus lactis.—J. Bacteriol. 144: 683–691.

    Google Scholar 

  • Thompson, J. and Thomas, T. D. 1977. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis.—J. Bacteriol. 130: 583–595.

    Google Scholar 

  • Winter, J. 1974. Der Einfluß von organischen Säuren und von Sauerstoff auf die Gär- und Energiebilanz von Leuconostoc und verschiedener Lactobacillen.—Dissertation. Universität München.

  • Woese, C. R. 1982. Archaebacteria and cellular origins: An overview.—Zbl. Bakt. Hyg., I. Abt. Orig. C3: 1–17.

    Google Scholar 

  • Zubay, G., Gielow, L. and Englesberg, E. 1971. Cell-free studies on the regulation of the arabinose operon.—Nature New Biol. 223: 164–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandler, O. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49, 209–224 (1983). https://doi.org/10.1007/BF00399499

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399499

Keywords

Navigation