Skip to main content

The Family Leuconostocaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Leuconostocaceae are lactic acid bacteria (LAB) belonging to order Lactobacillales. The family consists of genera Leuconostoc, Weissella, Oenococcus, and Fructobacillus. The genus Leuconostoc was described already in 1878 by van Tieghem. The oldest described species belonging to Oenococcus and Fructobacillus were originally described as Leuconostoc spp. but were later reclassified based on phenotypic and phylogenetic studies. Genus Weissella contains species originally classified as Leuconostoc or Lactobacillus spp.

Like other LAB, Leuconostocaceae are Gram positive, catalase negative, and chemoorganotrophic. They grow in rich media supplemented with growth factors and amino acids and generate energy by substrate-level phosphorylation. Leuconostocaceae ferment glucose heterofermentatively yielding lactic acid, CO2, ethanol, and/or acetate.

Leuconostocaceae are found in environments with high nutrient content, e.g., on green vegetation, roots, and food. Within LAB, Leuconostocaceae are characterized by their adaptable fermentation patterns that enable efficient generation of ATP from carbohydrates and, consequently, enhanced growth. Due to their ability to grow rapidly in rich media under elevated CO2 concentration at moderate temperatures, Leuconostocaceae are competitive in various food environments and contribute to a number of fermentation processes. The diverse fermentation substrates and products of Leuconostocaceae may cause desired or undesired effects on the organoleptic quality of foods.

This contribution is a modified and updated version of previous descriptions of the family (Schleifer, 2009) and the included genera (Björkroth et al., 2009; Björkroth and Holzapfel, 2006; Dicks and Holzapfel, 2009; Holzapfel et al., 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Albano H, van Reenen CA, Todorov SD, Cruz D, Fraga L, Hogg T, Dicks LMT, Teixeira P (2009) Phenotypic and genetic heterogeneity of lactic acid bacteria isolated from “Alheira”, a traditional fermented sausage produced in Portugal. Meat Sci 82:389–398

    PubMed  CAS  Google Scholar 

  • Amari M, Arango LFG, Gabriel V, Robert H, Morel S, Moulis C, Gabriel B, Remaud-Siméon M, Fontagné-Faucher C (2012a) Characterization of a novel dextransucrase from Weissella confusa isolated from sourdough. Appl Microbiol Biotechnol 97(12):5413–5422

    PubMed  Google Scholar 

  • Amari M, Laguerre S, Vuillemin M, Robert H, Loux V, Klopp C, Morel S, Gabriel B, Remaud-Siméon M, Gabriel V, Moulis C, Fontagné-Faucher C (2012b) Genome sequence of Weissella confusa LBAE C39-2, isolated from a wheat sourdough. J Bacteriol 194:1608–1609

    PubMed  CAS  PubMed Central  Google Scholar 

  • Amerine MA, Berg HW, Kunkee RE, Ough CS, Singleton VL, Webb AD (1980) The technology of wine making, 4th edn. AVI, Westport

    Google Scholar 

  • Ampe F, Ben Omar N, Moizan C, Wacher C, Guyot J-P (1999) Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl Environ Microbiol 65:5464–5473

    PubMed  CAS  PubMed Central  Google Scholar 

  • Antai SP, Ibrahim MH (1986) Microorganisms associated with African locust bean (Parkia-Filicoidea) fermentation for “dawadawa” production. J Appl Bacteriol 6l:145–148

    Google Scholar 

  • Antunes A, Rainey FA, Nobre MF, Schumann P, Ferreira AM, Ramos A, Santos H, da Costa MS (2002) Leuconostoc ficulneum sp. nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov. Int J Syst Evol Microbiol 52:647–655

    PubMed  CAS  Google Scholar 

  • Arahal DR, Sanchez E, Macian MC, Garay E (2008) Value of recN sequences for species identification and as a phylogenetic marker within the family “Leuconostocaceae”. Int Microbiol 11:33–39

    PubMed  CAS  Google Scholar 

  • Auch AF, von Jan M, Klenk H-P, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134

    PubMed  PubMed Central  Google Scholar 

  • Avallone S, Guyot B, Brillouet JM, Olguin E, Guiraud JP (2001) Microbiological and biochemical study of coffee fermentation. Curr Microbiol 42:252–256

    PubMed  CAS  Google Scholar 

  • Aymerich T, Martín B, Garriga M, Vidal-Carou MC, Bover-Cid S, Hugas M (2006) Safety properties and molecular strain typing of lactic acid bacteria from slightly fermented sausages. J Appl Microbiol 100:40–49

    PubMed  CAS  Google Scholar 

  • Aznar R, Chenoll E (2006) Intraspecific diversity of Lactobacillus curvatus, Lactobacillus plantarum, Lactobacillus sakei, and Leuconostoc mesenteroides associated with vacuum-packed meat product spoilage analyzed by randomly amplified polymorphic DNA PCR. J Food Prot 69:2403–2410

    PubMed  CAS  Google Scholar 

  • Babic I, Markov K, Kovacevic D, Trontel A, Slavica A, Dugum J, Cvek D, Svetec IK, Posavec S, Frece J (2011) Identification and characterization of potential autochthonous starter cultures from a Croatian “brand” product “Slavonski kulen”. Meat Sci 88:517–524

    PubMed  CAS  Google Scholar 

  • Bao Q, Liu W, Yu J, Wang W, Qing M, Chen X, Wang F, Zhang J, Zhang W, Qiao J, Sun T, Zhang H (2012) Isolation and identification of cultivable lactic acid bacteria in traditional yak milk products of Gansu Province in China. J Gen Appl Microbiol 58:95–105

    PubMed  CAS  Google Scholar 

  • Bartowsky EJ (2009) Bacterial spoilage of wine and approaches to minimize it. Lett Appl Microbiol 48:149–156

    PubMed  CAS  Google Scholar 

  • Bartowsky EJ, Borneman AR (2011) Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine. Appl Microbiol Biotechnol 92:441–447

    PubMed  CAS  Google Scholar 

  • Bartowsky EJ, McCarthy JM, Henschke P (2003) Differentiation of Australian wine isolates of Oenococcus oeni using random amplified polymorphic DNA (RAPD). Aust J Grape Wine Res 9:122–126

    CAS  Google Scholar 

  • Ben Belgacem Z, Dousset X, Prévost H, Manai M (2009) Polyphasic taxonomic studies of lactic acid bacteria associated with Tunisian fermented meat based on the heterogeneity of the 16S-23S rRNA gene intergenic spacer region. Arch Microbiol 191:711–720

    PubMed  CAS  Google Scholar 

  • Benito MJ, Martín A, Aranda E, Pérez-Nevado F, Ruiz-Moyano S, Córdoba MG (2007) Characterization and selection of autochthonous lactic acid bacteria isolated from traditional Iberian dry-fermented salchichón and chorizo sausages. J Food Sci 72:M193–M201

    PubMed  CAS  Google Scholar 

  • Benomar N, Abriouel H, Lee H, Cho G-S, Huch M, Pulido RP, Holzapfel WH, Gálvez A, Franz CMAP (2011) Genome sequence of Weissella thailandensis fsh4-2. J Bacteriol 193:5868

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beukes EM, Bester BH, Mostert JF (2001) The microbiology of South African traditional fermented milks. Int J Food Microbiol 63:189–197

    PubMed  CAS  Google Scholar 

  • Bilhere E, Lucas PM, Claisse O, Lonvaud-Funel A (2009) Multilocus sequence typing of Oenococcus oeni: detection of two subpopulations shaped by intergenic recombination. Appl Environ Microbiol 75:1291–1300

    PubMed  CAS  PubMed Central  Google Scholar 

  • Björkroth J, Holzapfel WH (2006) Genera Leuconostoc, Oenococcus and Weissella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria: Firmicutes, Cyanobacteria, vol 4, 3rd edn. Springer, Dordrecht/Heidelberg/London/New York, pp 267–319

    Google Scholar 

  • Björkroth KJ, Vandamme P, Korkeala HJ (1998) Identification and characterization of Leuconostoc carnosum, associated with production and spoilage of vacuum-packaged, sliced, cooked ham. Appl Environ Microbiol 64:3313–3319

    PubMed  PubMed Central  Google Scholar 

  • Björkroth J, Geisen R, Schillinger U, Weiss N, De Vos P, Holzapfel WH, Korkeala HJ, Vandamme P (2000) Characterization of Leuconostoc gasicomitatum sp. nov. associated with spoiled raw tomato-marinated broiler meat strips packaged under modified atmosphere. Appl Environ Microbiol 66:3764–3772

    PubMed  PubMed Central  Google Scholar 

  • Björkroth J, Schillinger U, Geisen R, Weiss N, Holzapfel WH, Korkeala HJ, Vandamme P (2002) Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., a novel species detected in food and clinical samples. Int J Syst Evol Microbiol 52:141–148

    PubMed  Google Scholar 

  • Björkroth J, Dicks LMT, Holzapfel WH (2009) Genus III. Weissella Collins, Samelis, Metaxopoulos and Wallbanks 1994, 370VP (Effective publication: Collins, Samelis Metaxopoulos and Wallbanks 1993, 597). In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology (The Firmicutes), vol 3, 2nd edn. Springer, Dordrecht/Heidelberg/London/New York, pp 643–653

    Google Scholar 

  • Boissy R, Ahmed A, Janto B, Earl J, Hall BG, Hogg JS, Pusch GD, Hiller LN, Powell E, Hayes J, Yu S, Kathju S, Stoodley P, Post JC, Ehrlich GD, Hu FZ (2011) Comparative supragenomic analyses among the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae using a modification of the finite supragenome model. BMC Genomics 12:187

    PubMed  PubMed Central  Google Scholar 

  • Bonnin-Jusserand M, Grandvalet C, David V, Alexandre H (2011) Molecular cloning, heterologous expression, and characterization of ornithine decarboxylase from Oenococcus oeni. J Food Prot 74:1309–1314

    PubMed  CAS  Google Scholar 

  • Bonomo MG, Ricciardi A, Zotta T, Parente E, Salzano G (2008) Molecular and technological characterization of lactic acid bacteria from traditional fermented sausages of Basilicata region (Southern Italy). Meat Sci 80:1238–1248

    PubMed  CAS  Google Scholar 

  • Borneman AR, Bartowsky EJ, McCarthy J, Chambers PJ (2010) Genotypic diversity in Oenococcus oeni by high-density microarray comparative genome hybridization and whole genome sequencing. Appl Microbiol Biotechnol 862:681–691

    Google Scholar 

  • Borneman AR, McCarthy JM, Chambers PJ, Bartowsky EJ (2012a) Functional divergence in the genus Oenococcus as predicted by genome sequencing of the newly-described species, Oenococcus kitaharae. PLoS One 7:e29626

    PubMed  CAS  PubMed Central  Google Scholar 

  • Borneman AR, McCarthy JM, Chambers PJ, Bartowsky EJ (2012b) Comparative analysis of the Oenococcus oeni pan genome reveals genetic diversity in industrially-relevant pathways. BMC Genomics 13:373

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bounaix MS, Gabriel V, Robert H, Morel S, Remaud-Siméon M, Gabriel B, Fontagné-Faucher C (2010a) Characterization of glucan-producing Leuconostoc strains isolated from sourdough. Int J Food Microbiol 144:1–9

    PubMed  CAS  Google Scholar 

  • Bounaix MS, Robert H, Gabriel V, Morel S, Remaud-Siméon M, Gabriel B, Fontagné-Faucher C (2010b) Characterization of dextran-producing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression. FEMS Microbiol Lett 311:18–26

    PubMed  CAS  Google Scholar 

  • Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53:33–41

    PubMed  CAS  Google Scholar 

  • Bridier J, Claisse O, Coton M, Coton E, Lonvaud-Funel A (2010) Evidence of distinct populations and specific subpopulations within the species Oenococcus oeni. Appl Environ Microbiol 76:7754–7764

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brito L, Paveia H (1999) Presence and analysis of large plasmids in Oenococcus oeni. Plasmid 413:260–267

    Google Scholar 

  • Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, Morovic W, Horvath P, Heidenreich J, Perna NT, Barrangou R, Steele JL (2012) Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics 131:533

    Google Scholar 

  • Brooijmans R, Smit B, Santos F, van Riel J, de Vos WM, Hugenholtz J (2009) Heme and menaquinone induced electron transport in lactic acid bacteria. Microb Cell Fact 8:28

    PubMed  PubMed Central  Google Scholar 

  • Buu-Hoi A, Branger C, Acar JF (1985) Vancomycin-resistant streptococci or Leuconostoc sp. Antimicrob Agents Chemother 28:458–460

    PubMed  CAS  PubMed Central  Google Scholar 

  • Campos G, Robles L, Alonso R, Nuñez M, Picon A (2011) Microbial dynamics during the ripening of a mixed cow and goat milk cheese manufactured using frozen goat milk curd. J Dairy Sci 94:4766–4776

    PubMed  CAS  Google Scholar 

  • Camu N, De Winter T, Verbrugghe K, Cleenwerck I, Vandamme P, Takrama JS, Vancanneyt M, De Vuyst L (2007) Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl Environ Microbiol 73:1809–1824

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cappello M, Stefani D, Grieco F, Logrieco A, Zapparoli G (2008) Genotyping by amplified fragment length polymorphism and malate metabolism performances of indigenous Oenococcus oeni strains isolated from Primitivo wine. Int J Food Microbiol 127:241–245

    PubMed  CAS  Google Scholar 

  • Cappello M, Zapparoli G, Stefani D, Logrieco A (2010) Molecular and biochemical diversity of Oenococcus oeni strains isolated during spontaneous malolactic fermentation of Malvasia Nera wine. Syst Appl Microbiol 33:461–467

    PubMed  CAS  Google Scholar 

  • Carreté R, Vidal MT, Bordons A, Constantí M (2002) Inhibitory effect of sulfur dioxide and other stress compounds in wine on the ATPase activity of Oenococcus oeni. FEMS Microbiol Lett 211:155–159

    PubMed  Google Scholar 

  • Chambel L, Chelo IM, Zé-Zé L, Pedro LG, Santos MA, Tenreiro R (2006) Leuconostoc pseudoficulneum sp. nov., isolated from a ripe fig. Int J Syst Evol Microbiol 56:1375–1381

    PubMed  CAS  Google Scholar 

  • Chelo IM, Ze-Ze L, Tenreiro R (2007) Congruence of evolutionary relationships inside the Leuconostoc-Oenococcus-Weissella clade assessed by phylogenetic analysis of the 16S rRNA gene, dnaA, gyrB, rpoC and dnaK. Int J Syst Evol Microbiol 57:276–286

    PubMed  CAS  Google Scholar 

  • Chelo IM, Zé-Zé L, Tenreiro R (2010) Genome diversity in the genera Fructobacillus, Leuconostoc and Weissella determined by physical and genetic mapping. Microbiology 156:420–430

    PubMed  CAS  Google Scholar 

  • Chen Y-S, Yanagida F, Shinohara T (2005) Isolation and identification of lactic acid bacteria from soil using an enrichment procedure. Lett Appl Microbiol 40:195–200

    PubMed  CAS  Google Scholar 

  • Chenoll E, Macián MC, Aznar R (2003) Identification of Carnobacterium, Lactobacillus, Leuconostoc and Pediococcus by rDNA-based techniques. Syst Appli Microbiol 26(4):546–556

    CAS  Google Scholar 

  • Chenoll E, Macián MC, Elizaquível P, Aznar R (2007) Lactic acid bacteria associated with vacuum-packed cooked meat product spoilage: population analysis by rDNA-based methods. J Appl Microbiol 102(2):498–508. doi:10.1111/j.1365-2672.2006.03081.x

    Google Scholar 

  • Cho J, Lee D, Yang C, Jeon J, Kim J, Han H (2006) Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol Lett 257:262–267

    PubMed  CAS  Google Scholar 

  • Choi H-J, Cheigh C-I, Kim S-B, Lee J-C, Lee D-W, Choi S-W, Park J-M, Pyun Y-R (2002) Weissella kimchii sp. nov., a novel lactic acid bacterium isolated from kimchi. Int J Syst Appl Microbiol 52:507–511

    CAS  Google Scholar 

  • Choi I-K, Jung S-H, Kim B-J, Park S-Y, Kim J, Han H-U (2003) Novel Leuconostoc citreum starter culture system for fermentation of kimchi, a fermented cabbage product. Antonie Van Leeuwenhoek 84(4):247–253

    PubMed  CAS  Google Scholar 

  • Cibik R, Lepage E, Talliez P (2000) Molecular diversity of Leuconostoc mesenteroides and Leuconostoc citreum isolated from traditional French cheeses as revealed by RAPD fingerprinting, 16S rDNA sequencing and 16S rDNA fragment amplification. Syst Appl Microbiol 23:267–278

    PubMed  CAS  Google Scholar 

  • Cogan TM, Barbosa M, Beuvier E, Bianchi-Salvadori B, Cocconcelli PS, Fernandes I, Gomez J, Gomez R, Kalantzopoulos G, Ledda A, Medina M, Rea MC, Rodriguez E (1997) Characterization of the lactic acid bacteria in artisanal dairy products. J Dairy Res 64:409–421

    CAS  Google Scholar 

  • Collins MD, Samelis J, Metaxopoulus J, Wallbanks S (1993) Taxonomic studies on some leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75:595–603

    PubMed  CAS  Google Scholar 

  • Condon S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol Lett 46:269–280

    CAS  Google Scholar 

  • Corsetti A, Lavermicocca P, Morea M, Baruzzi F, Tosti N, Gobbetti M (2001) Phenotypic and molecular identification and clustering of lactic acid bacteria and yeasts from wheat (species Triticum durum and Triticum aestivum) sourdoughs of Southern Italy. Int J Food Microbiol 64:95–104

    PubMed  CAS  Google Scholar 

  • Cote GL, Ahlgren JA (1995) Microbial polysaccharides. In: Kroschwitz JI, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 16, 4th edn. Wiley, New York, pp 578–611

    Google Scholar 

  • Daeschel MA, Andersson RE, Fleming HP (1987) Microbial ecology of fermenting plant materials. FEMS Microbiol Rev 46:357–367

    Google Scholar 

  • Danilovic B, Jokovic N, Petrovic L, Veljovic K, Tolinacki M, Savic D (2011) The characterisation of lactic acid bacteria during the fermentation of an artisan Serbian sausage (Petrovská Klobása). Meat Sci 88:668–674

    PubMed  CAS  Google Scholar 

  • Davis G, Silveira NFA, Fleet GH (1985) Occurrence and properties of bacteriophages of Leuconostoc oenos in Australian wines. Appl Environ Microbiol 50:872–876

    PubMed  CAS  PubMed Central  Google Scholar 

  • De Bruyne K, Schillinger U, Caroline L, Boehringer B, Cleenwerck I, Vancanneyt M, De Vuyst L, Franz CMAP, Vandamme P (2007) Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol 57:2952–2959

    PubMed  Google Scholar 

  • De Bruyne K, Camu N, Lefebvre K, De Vuyst L, Vandamme P (2008) Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation. Int J Syst Evol Microbiol 58:2721–2725

    PubMed  Google Scholar 

  • De Bruyne K, Camu N, De Vuyst L, Vandamme P (2010) Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. Int J Syst Evol Microbiol 60:1999–2005

    PubMed  Google Scholar 

  • De Bruyne K, Slabbinck B, Waegeman W, Vauterin P, De Baets B, Vandamme P (2011) Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst Appl Microbiol 34(1):20–29

    PubMed  Google Scholar 

  • de Las Rivas B, Marcobal A, Munoz R (2004) Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeeping genes. Appl Environ Microbiol 70:7210–7219

    PubMed  Google Scholar 

  • de Llano DG, Cuesta P, Rodríguez A (1998) Biogenic amine production by wild lactococcal and leuconostoc strains. Lett Appl Microbiol 26:270–274

    Google Scholar 

  • De Man JC, Rogosa M, Sharpe EM (1960) A medium for the cultivation of lactobacilli. J Appl Microbiol 23:130–135

    Google Scholar 

  • De Vuyst L, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swings J, Kalantzopoulos G, Tsakalidou E, Messens W (2002) The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Appl Environ Microbiol 68:6059–6069

    PubMed  PubMed Central  Google Scholar 

  • Dicks LMT, Holzapfel WH (2009) Genus II. Oenococcus Dicks, Dellaglio and Collins 1995a, 396VP. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology (The Firmicutes), vol 3, 2nd edn. Springer, Dordrecht/Heidelberg/London/New York, pp 635–642

    Google Scholar 

  • Dicks LM, van Vuuren HJ, Dellaglio F (1990) Taxonomy of Leuconostoc species, particularly Leuconostoc oenos, as revealed by numerical analysis of total soluble cell protein patterns, DNA base compositions, and DNA-DNA hybridizations. Int J Syst Bacteriol 40:83–91

    Google Scholar 

  • Dicks LMT, Dellaglio F, Collins MD (1995) Proposal to reclassify Leuconostoc oenos as Oenococcus oeni corrig. gen. nov., comb. nov. Int J Syst Bacteriol 45:395–397

    PubMed  CAS  Google Scholar 

  • Diez AM, Bjorkroth J, Jaime I, Rovira J (2009) Microbial, sensory and volatile changes during the anaerobic cold storage of morcilla de Burgos previously inoculated with Weissella viridescens and Leuconostoc mesenteroides. Int J Food Microbiol 131:168–177

    PubMed  CAS  Google Scholar 

  • Dols M, Chraibi W, Remaud-Simeon M, Lindley ND, Monsan PF (1997) Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production. Appl Environ Microbiol 63:2159–2165

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duitschaever CL, Kemp N, Emmons E (1987) Pure culture formulation and procedure for the production of kefir. Milchwissenschaft 42:80–82

    Google Scholar 

  • Edwards RA, Dainty RH, Hibbard CM, Ramantanis SV (1987) Amines in fresh beef of normal pH and the role of bacteria in changes in concentration observed during storage in vacuum packs at chill temperatures. J Appl Bacteriol 63:427–434

    PubMed  CAS  Google Scholar 

  • Edwards CG, Haag KM, Collins MD (1998) Identification and characterization of two lactic acid bacteria associated with sluggish/stuck fermentations. Am J Enol Viticult 49:445–448

    Google Scholar 

  • Ehrmann MA, Freiding S, Vogel RF (2009) Leuconostoc palmae sp. nov., a novel lactic acid bacterium isolated from palm wine. Int J Syst Evol Microbiol 59:943–947

    PubMed  CAS  Google Scholar 

  • Elisha BG, Courvalin P (1995) Analysis of genes encoding d-alanine: d-alanine ligase-related enzymes in Leuconostoc mesenteroides and Lactobacillus spp. Gene 152:79–83

    PubMed  CAS  Google Scholar 

  • Endo A, Okada S (2006) Oenococcus kitaharae sp. nov., a non-acidophilic and non-malolactic-fermenting oenococcus isolated from a composting distilled shochu residue. Int J Syst Evol Microbiol 56:2345–2348

    PubMed  CAS  Google Scholar 

  • Endo A, Okada S (2008) Reclassification of the genus Leuconostoc, and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov. Int J Syst Evol Microbiol 58:2195–2205

    PubMed  CAS  Google Scholar 

  • Endo A, Futagawa-Endo Y, Dicks LMT (2009) Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Syst Appl Microbiol 32:593–600

    PubMed  CAS  Google Scholar 

  • Endo A, Irisawa T, Futagawa-Endo Y, Sonomoto K, Itoh K, Takano K, Okada S, Dicks LMT (2011) Fructobacillus tropaeoli sp. nov., a novel fructophilic lactic acid bacterium isolated from a flower. Int J Syst Evol Microbiol 61:898–902

    PubMed  CAS  Google Scholar 

  • Ennahar S, Cai Y (2004) Genetic evidence that Weissella kimchii Choi et al. 2002 is a later heterotypic synonym of Weissella cibaria Björkroth et al. 2002. Int J Syst Evol Microbiol 54:463–465

    PubMed  CAS  Google Scholar 

  • Eom H-J, Seo DM, Han NS (2007) Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int J Food Microbiol 117:61–67

    PubMed  CAS  Google Scholar 

  • Evans JB, Niven CF Jr (1951) Nutrition of the heterofermentative lactobacilli that cause greening of cured meat products. J Bacteriol 62:599–603

    PubMed  CAS  PubMed Central  Google Scholar 

  • Farrow JAE, Facklam RR, Collins MD (1989) Nucleic acid homologies of some vancomycin-resistant leuconostocs and description of Leuconostoc citreum sp. nov. and Leuconostoc pseudomesenteroides. Int J Syst Bacteriol 39:279–283

    Google Scholar 

  • Flaherty JD, Levett PN, Dewhirst FE, Troe TE, Warren JR, Johnson S (2003) Fatal case of endocarditis due to Weissella confusa. J Clin Microbiol 41:2237–2239

    PubMed  PubMed Central  Google Scholar 

  • Fontana C, Cappa F, Rebecchi A, Cocconcelli PS (2010) Surface microbiota analysis of Taleggio, Gorgonzola, Casera, Scimudin and Formaggio di Fossa Italian cheeses. Int J Food Microbiol 138:205–211

    PubMed  Google Scholar 

  • Frank HA, Dela Cruz AS (1964) Role of incidental microflora in natural decomposition of mucilage layer in Kona coffee. J Food Sci 29:850–853

    CAS  Google Scholar 

  • Galle S, Schwab C, Arendt E, Gänzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58:5834–5841

    PubMed  CAS  Google Scholar 

  • Garcia-Moruno E, Muñoz R (2012) Does Oenococcus oeni produce histamine? Int J Food Microbiol 157:121–129

    PubMed  CAS  Google Scholar 

  • Gardini F, Zaccarelli A, Belletti N, Faustini F, Cavazza A, Martuscelli M, Mastrocola D, Suzzi G (2005) Factors influencing biogenic amine production by a strain of Oenococcus oeni in a model system. Food Control 16:609–616

    CAS  Google Scholar 

  • Gardner NJ, Savard T, Obermeier P, Caldwell G, Champagne CP (2001) Selection and characterisation of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int J Food Microbiol 64:261–275

    PubMed  CAS  Google Scholar 

  • Garvie EI (1967a) The growth factor and amino acid requirements of species of the genus Leuconostoc, including Leuconostoc paramesenteroides (sp. nov.) and Leuconostoc oenos. J Gen Microbiol 48:439–447

    PubMed  CAS  Google Scholar 

  • Garvie EI (1967b) Leuconostoc oenos sp. nov. J Gen Microbiol 48:431–438

    PubMed  CAS  Google Scholar 

  • Garvie EI (1975) Some properties of gas forming lactic acid bacteria and their significance in classification. In: Carr JG, Cutting DV, Whiting GC (eds) Lactic acid bacteria in beverages and food. Academic, London

    Google Scholar 

  • Garvie EI (1976) Hybridization between the deoxyribonucleic acids of some strains of heterofermentative lactic acid bacteria. Int J Syst Bacteriol 26:116–122

    Google Scholar 

  • Garvie EI (1986) Genus Leuconostoc van Tieghem 1878, 198AL emend. mut. char. Hucker and Pederson 1930, 66AL. In: Sneath PHA, Mair NS, Sharpe MS, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 1071–1075

    Google Scholar 

  • Garvie EI, Mabbitt LA (1967) Stimulation of the growth of Leuconostoc oenos by tomato juice. Arch Mikrobiol 55:398–407

    PubMed  CAS  Google Scholar 

  • Gashe BA (1987) Kocho fermentation. J Appl Bacteriol 62:473–478

    Google Scholar 

  • Gu CT, Wang F, Li CY, Liu F, Huo GC (2012) Leuconostoc mesenteroides subsp. suionicum subsp. nov. Int J Syst Evol Microbiol 62:1548–1551

    PubMed  CAS  Google Scholar 

  • Gueguen Y, Chemardin P, Labrot P, Arnaud A, Galzy P (1997) Purification and characterization of an intracellular beta-glucosidase from a new strain of Leuconostoc mesenteroides isolated from cassava. J Appl Microbiol 82:469–476

    CAS  Google Scholar 

  • Guerini S, Mangani S, Granchi L, Vincenzini M (2002) Biogenic amine production by Oenococcus oeni. Curr Microbiol 44:374–378

    Google Scholar 

  • Hancioglu O, Karapinar M (1997) Microflora of Boza, a traditional fermented Turkish beverage. Int J Food Microbiol 35:271–274

    PubMed  CAS  Google Scholar 

  • Harlan NP, Kempker RR, Parekh SM, Burd EM, Kuhar DT (2011) Weissella confusa bacteremia in a liver transplant patient with hepatic artery thrombosis. Transpl Infect Dis 13:290–293

    PubMed  CAS  Google Scholar 

  • Hastings JW, Stiles ME, von Holy A (1994) Bacteriocins of leuconostocs isolated from meat. Int J Food Microbiol 24:75–81

    PubMed  CAS  Google Scholar 

  • He H, Chen Y, Zhang Y, Wei C (2011) Bacteria associated with gut lumen of Camponotus japonicus Mayr. Environ Entomol 40:1405–1409

    PubMed  CAS  Google Scholar 

  • Hemme D, Foucaud-Scheunemann C (2004) Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int Dairy J 14:467–494

    Google Scholar 

  • Herrero M, Laca A, Garcia LA, Diaz M (2001) Controlled malolactic fermentation in cider using Oenococcus oeni immobilized in alginate beads and comparison with free cell fermentation. Enzyme Microb Technol 28:35–41

    PubMed  CAS  Google Scholar 

  • Holzapfel W (1998) The Gram-positive bacteria associated with meat and meat products. In: Davies A, Board R (eds) The microbiology of meat and poultry. Blackie Academic and Professional, London, pp 35–74

    Google Scholar 

  • Holzapfel WH, Kandler O (1969) Zur Taxonomie der Gattung Lactobacillus Beijernick. VI.Lactobacillus coprophilus subsp. confusus nov. subsp., eine neue Unterart der Untergattung Betabacterium. Zentbl Bakteriol Parasitenkd Infektionskr Hyg 123:657–666

    CAS  Google Scholar 

  • Holzapfel WH, van Wyk EP (1982) Lactobacillus kandleri sp. nov., a new species of the subgenus Betabacterium with glycine in the peptidoglycan. Zentbl Bakteriol Parasitenkd Infektionskr Hyg C3:495–502

    Google Scholar 

  • Holzapfel WH, Björkroth J, Dicks LMT (2009) Genus I. Leuconostoc van Tieghem 1878, 198AL emend. mut. char. (Hucker and Pederson 1930), 66AL. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology (The Firmicutes), vol 3, 2nd edn. Springer, Dordrecht/Heidelberg/London/New York, pp 624–634

    Google Scholar 

  • Hosono A, Wardojo R, Otani H (1989) Microbial flora in dadih, a traditional fermented milk in Indonesia. Lebensm Wiss Technol 22:20–24

    Google Scholar 

  • Hsieh H-H, Wang S-Y, Chen T-L, Huang Y-L, Chen M-J (2012) Effects of cow’s and goat’s milk as fermentation media on the microbial ecology of sugary kefir grains. Int J Food Microbiol 157:73–81

    PubMed  CAS  Google Scholar 

  • Hucker GJ, Pederson CS (1930) Studies on the Coccoceae XVI. The Genus Leuconostoc. N.Y. Agric Exp Sta Bull 167:3–80

    CAS  Google Scholar 

  • Huygens F (1993) Vancomycin binding to cell walls of non-streptococcal vancomycin-resistant bacteria. J Antimicrob Chemother 32:551–558

    PubMed  CAS  Google Scholar 

  • Illeghems K, De Vuyst L, Papalexandratou Z, Weckx S (2012) Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. PLoS One 7:e38040

    PubMed  CAS  PubMed Central  Google Scholar 

  • Izquierdo Cañas PM, Gómez Alonso S, Ruiz Pérez P, Seseña Prieto S, García Romero E, Palop Herreros ML (2009) Biogenic amine production by Oenococcus oeni isolates from malolactic fermentation of Tempranillo wine. J Food Prot 72:907–910

    PubMed  Google Scholar 

  • Jang J, Kim B, Lee J, Kim J, Jeong G, Han H (2002) Identification of Weissella species by the genus-specific amplified ribosomal DNA restriction analysis. FEMS Microbiol Lett 212:29–34

    PubMed  CAS  Google Scholar 

  • Jang J, Kim B, Lee J, Han H (2003) A rapid method for identification of typical Leuconostoc species by 16S rDNA PCR-RFLP analysis. J Microbiol Methods 55:295–302

    PubMed  CAS  Google Scholar 

  • Johansson P, Paulin L, Vihavainen E, Salovuori N, Alatalo ER, Björkroth KJ (2011) Genome sequence of a food spoilage lactic acid bacterium Leuconostoc gasicomitatum LMG 18811T in association with specific spoilage reactions. Appl Environ Microbiol 77:4344–4351

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones KL, Jones SE (1984) Fermentations involved in the production of cocoa, coffee and tea. Prog Ind Microbiol 19:411–456

    CAS  Google Scholar 

  • Jung JY, Lee SH, Jeon CO (2012a) Complete genome sequence of Leuconostoc carnosum strain JB16, isolated from kimchi. J Bacteriol 194:6672–6673

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jung JY, Lee SH, Jeon CO (2012b) Complete genome sequence of Leuconostoc gelidum strain JB7, isolated from kimchi. J Bacteriol 194:6665

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jung JY, Lee SH, Lee SH, Jeon CO (2012c) Complete genome sequence of Leuconostoc mesenteroides subsp. mesenteroides strain J18, isolated from kimchi. J Bacteriol 194:730–731

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jung JY, Lee SH, Lee HJ, Seo H-Y, Park W-S, Jeon CO (2012d) Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int J Food Microbiol 153:378–387

    PubMed  CAS  Google Scholar 

  • Kandler O, Abo-Elnaga IG (1966) Zur Taxonomie der Gattung Lactobacillus Beijerinck. IV. L. corynoides ein Synonym von L. viridescens. Zentrbl Bakteriol Parasitenkd Infektionskr Hyg 120:753–759

    CAS  Google Scholar 

  • Kandler O, Schillinger U, Weiss N (1983) Lactobacillus halotolerans sp. nov, nom. rev. and Lactobacillus minor sp. nov., nom. rev. System Appl Microbiol 4:280–285

    CAS  Google Scholar 

  • Katina K, Maina NH, Juvonen R, Flander L, Johansson L, Virkki L, Tenkanen M, Laitila A (2009) In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiol 26:734–743

    PubMed  CAS  Google Scholar 

  • Kesmen Z, Yetiman AE, Gulluce A, Kacmaz N, Sagdic O, Cetin B, Adiguzel A, Sahin F, Yetim H (2012) Combination of culture-dependent and culture-independent molecular methods for the determination of lactic microbiota in sucuk. Int J Food Microbiol 153:428–435

    PubMed  CAS  Google Scholar 

  • Kim M, Chun J (2005) Bacterial community structure in Kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int J Food Microbiol 103:91–96

    PubMed  CAS  Google Scholar 

  • Kim J, Chun J, Han H-U (2000a) Leuconostoc kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 50:1915–1919

    PubMed  CAS  Google Scholar 

  • Kim B-J, Lee H-J, Park S-Y, Kim J, Han H-U (2000b) Identification and characterisation of Leuconostoc gelidum isolated from kimchi, a fermented cabbage product. J Microbiol 38:132–135

    CAS  Google Scholar 

  • Kim B, Lee J, Jang J, Kim J, Han H (2003) Leuconostoc inhae sp. nov., a lactic acid bacterium isolated from kimchi. Int J Syst Evol Microbiol 53:1123–1126

    PubMed  CAS  Google Scholar 

  • Kim JF, Jeong H, Lee J-S, Choi S-H, Ha M, Hur C-G, Kim J-S, Lee S, Park H-S, Park Y-H, Oh TK (2008) The complete genome sequence of Leuconostoc citreum KM20. J Bacteriol 190:3093–3094

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim D-W, Choi S-H, Kang A, Nam S-H, Kim RN, Kim A, Kim D-S, Park H-S (2011a) Genome sequence of Leuconostoc pseudomesenteroides KCTC 3652. J Bacteriol 193:4299

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim D-S, Choi S-H, Kim D-W, Kim RN, Nam S-H, Kang A, Kim A, Park H-S (2011b) Genome sequence of Leuconostoc gelidum KCTC 3527, isolated from kimchi. J Bacteriol 193:799–800

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim D-S, Choi S-H, Kim D-W, Nam S-H, Kim RN, Kang A, Kim A, Park H-S (2011c) Genome sequence of Weissella cibaria KACC 11862. J Bacteriol 193:797–798

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kiviharju K, Nyyssölä A (2008) Contributions of biotechnology to the production of mannitol. Recent Pat Biotechnol 2:73–78

    PubMed  CAS  Google Scholar 

  • Koch H, Schmid-Hempel P (2011) Bacterial communities in central European bumblebees: low diversity and high specificity. Microb Ecol 62:121–133

    PubMed  Google Scholar 

  • Kodama R (1956) Studies on the nutrition of lactic acid bacteria. Part IV. Lactobacillus fructosus nov. sp., a new species of lactic acid bacteria. J Agr Chem Soc Jpn 30:05–708

    Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koort J, Coenye T, Santos EM, Molinero C, Jaime I, Rovira J, Vandamme P, Bjorkroth J (2006) Diversity of Weissella viridescens strains associated with “Morcilla De Burgos”. Int J Food Microbiol 109:164–168

    PubMed  Google Scholar 

  • Kowalczyk M, Kolakowski P, Radziwill-Bienkowska JM, Szmytkowska A, Bardowski J (2011) Cascade cell lyses and DNA extraction for identification of genes and microorganisms in kefir grains. J Dairy Res 79:26–32

    Google Scholar 

  • Kralj S, van Geel-Schutten GH, Dondorff MMG, Kirsanovs S, van der Maarel MJEC, Dijkhuizen L (2004) Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology 150:3681–3690

    PubMed  CAS  Google Scholar 

  • Laguerre S, Amari M, Vuillemin M, Robert H, Loux V, Klopp C, Morel S, Gabriel B, Remaud-Siméon M, Gabriel V, Moulis C, Fontagné-Faucher C (2012) Genome sequences of three Leuconostoc citreum strains, LBAE C10, LBAE C11, and LBAE E16, isolated from wheat sourdoughs. J Bacteriol 194:1610–1611

    PubMed  CAS  PubMed Central  Google Scholar 

  • Le Jeune C, Lonvaud-Funel A (1997) Sequence of DNA 16S/23S spacer region of Leuconostoc oenos (Oenococcus oeni): application to strain differentiation. Res Microbiol 148:79–86

    PubMed  Google Scholar 

  • Lee J-S, Chun CO, Hector M, Kim S-B, Kim H-J, Park B-K, Joo Y-J, Lee H-J, Park C-S, Ahn J-S, Park Y-H, Mheen T-L (1997) Identification of Leuconostoc strains isolated from kimchi using carbon-source utilisation patterns. J Microbiol 35:10–14

    Google Scholar 

  • Lee J-S, Lee KC, Ahn J-S, Mheen T-I, Pyun Y-R, Park Y-H (2002) Weissella koreensis sp. nov., isolated from kimchi. Int J Syst Evol Microbiol 52:1257–1261

    PubMed  CAS  Google Scholar 

  • Lee MS, Cho SK, Eom H-J, Kim S-Y, Kim T-J, Han NS (2008) Optimized substrate concentrations for production of long-chain isomaltooligosaccharides using dextransucrase of Leuconostoc mesenteroides B-512F. J Microbiol Biotechnol 18:1141–1145

    PubMed  CAS  Google Scholar 

  • Lee MR, Huang YT, Liao CH, Lai CC, Lee PI, Hsueh PR (2011a) Bacteraemia caused by Weissella confusa at a university hospital in Taiwan, 1997–2007. Clin Microbiol Infect 17:1226–1231

    PubMed  Google Scholar 

  • Lee SH, Jung JY, Lee SH, Jeon CO (2011b) Complete genome sequence of Weissella koreensis KACC 15510, isolated from kimchi. J Bacteriol 193:5534

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee SH, Jung JY, Lee SH, Jeon CO (2011c) Complete genome sequence of Leuconostoc kimchii strain C2, isolated from kimchi. J Bacteriol 193:5548

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee JH, Bae J-W, Chun J (2012a) Draft genome sequence of Weissella koreensis KCTC 3621T. J Bacteriol 194:5711–5712

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee SH, Park MS, Jung JY, Jeon CO (2012b) Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida) kimchi. Int J Syst Evol Microbiol 62:1098–1103

    PubMed  CAS  Google Scholar 

  • Lefeber T, Janssens M, Moens F, Gobert W, De Vuyst L (2011) Interesting starter culture strains for controlled cocoa bean fermentation revealed by simulated cocoa pulp fermentations of cocoa-specific lactic acid bacteria. Appl Environ Microbiol 77:6694–6698

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leisner JJ, Pot B, Christensen H, Rusul G, Olsen JE, Wee BW, Muhamad K, Ghazali HM (1999) Identification of lactic acid bacteria from Chili Bo, a Malaysian food ingredient. Appl Environ Microbiol 65:599–605

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leisner JJ, Vancanneyt M, van der Meulen R, Lefebvre K, Engelbeen K, Hoste B, Laursen BG, Bay L, Rusul G, de Vuyst L, Swings J (2005) Leuconostoc durionis sp. nov., a heterofermenter with no detectable gas production from glucose. Int J Syst Evol Microbiol 55:1267–1270

    PubMed  CAS  Google Scholar 

  • Levata-Jovanovic M, Sandine WE (1997) A method to use Leuconostoc mesenteroides ssp. cremoris 91404 to improve milk fermentations. J Dairy Sci 80:11–18

    CAS  Google Scholar 

  • Lin CW, Chen HL, Liu JR (1999) Identification and characterisation of lactic acid bacteria and yeasts isolated from kefir grains in Taiwan. Aust J Dairy Technol 54:14–18

    Google Scholar 

  • Liu SQ (2002) A review: malolactic fermentation in wine – beyond deacidification. J Appl Microbiol 92:589–601

    PubMed  CAS  Google Scholar 

  • Liu JY, Li AH, Ji C, Yang WM (2009) First description of a novel Weissella species as an opportunistic pathogen for rainbow trout Oncorhynchus mykiss (Walbaum) in China. Vet Microbiol 136:314–320

    PubMed  Google Scholar 

  • Lönner C, Prove-Akesson K (1989) Effects of lactic acid bacteria on the properties of sour dough bread. Food Microbiol 6:19–35

    Google Scholar 

  • Lucas PM, Claisse O, Lonvaud-Funel A (2008) High frequency of histamine-producing bacteria in the enological environment and instability of the histidine decarboxylase production phenotype. Appl Environ Microbiol 74:811–817

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lucena BT, dos Santos BM, Moreira JL, Moreira AP, Nunes AC, Azevedo V, Miyoshi A, Thompson FL, de Morais MA Jr (2010) Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol 23:298

    Google Scholar 

  • Magnusson J, Jonsson H, Schnürer J, Roos S (2002) Weissella soli sp. nov., a lactic acid bacterium isolated from soil. Int J Syst Evol Microbiol 52:831–834

    PubMed  CAS  Google Scholar 

  • Maina NH, Tenkanen M, Maaheimo H, Juvonen R, Virkki L (2008) NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa. Carbohydr Res 343:1446–1455

    PubMed  CAS  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616

    PubMed  PubMed Central  Google Scholar 

  • Mäki M (2004) Lactic acid bacteria in vegetable fermentations. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria. Microbiological and functional aspects, 3rd edn. Marcel Dekker, New York/Basel, pp 419–430

    Google Scholar 

  • Marcobal A, Sela DA, Wolf YI, Makarova KS, Mills DA (2008) Role of hypermutability in the evolution of the genus Oenococcus. J Bacteriol 190:564–570

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marshall VM, Cole WM (1985) Methods for making kefir and fermented milks based on kefir. J Dairy Res 52:451–456

    CAS  Google Scholar 

  • Martinez-Murcia AJ, Collins MD (1990) A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 70:73–84

    CAS  Google Scholar 

  • Martinez-Murcia AJ, Harland NM, Collins MD (1993) Phylogenetic analysis of some leuconostocs and related organisms as determined from large-subunit rRNA gene sequences: assessment of congruence of small- and large-subunit rRNA derived trees. J Appl Bacteriol 74:532–541

    PubMed  CAS  Google Scholar 

  • Marty-Teysset C, Posthuma C, Lolkema JS, Schmitt P, Divies C, Konings WN (1996) Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides. J Bacteriol 178:2178–2185

    PubMed  CAS  PubMed Central  Google Scholar 

  • Menendez S, Godínez R, Centeno JA, Rodríguez-Otero JL (2001) Microbiological, chemical and biochemical characteristics of “Tetilla” raw cows-milk cheese. Food Microbiol 18:151–158

    CAS  Google Scholar 

  • Mesas JM, Rodríguez MC, Alegre MT (2011) Characterization of lactic acid bacteria from musts and wines of three consecutive vintages of Ribeira Sacra. Lett Appl Microbiol 52:258–268

    PubMed  CAS  Google Scholar 

  • Meslier V, Loux V, Renault P (2012) Genome sequence of Leuconostoc pseudomesenteroides strain 4882, Isolated from a dairy starter culture. J Bacteriol 194:6637

    PubMed  CAS  PubMed Central  Google Scholar 

  • Minervini F, Lattanzi A, De Angelis M, Di Cagno R, Gobbetti M (2012) Influence of artisan bakery- or laboratory-propagated sourdoughs on the diversity of lactic acid bacterium and yeast microbiotas. Appl Environ Microbiol 78:5328–5340

    PubMed  CAS  PubMed Central  Google Scholar 

  • Monchois V, Willemot RM, Monsan P (1999) Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev 23:131–151

    PubMed  CAS  Google Scholar 

  • Morales F, Morales JI, Hernández CH, Hernández-Sánchez H (2011) Isolation and partial characterization of halotolerant lactic acid bacteria from two Mexican cheeses. Appl Biochem Biotechnol 164:889–905

    PubMed  CAS  Google Scholar 

  • Moreno-Arribas MV, Polo MC, Jorganes F, Muñoz R (2003) Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol 84:117–123

    PubMed  CAS  Google Scholar 

  • Morse R, Collins MD, O’Hanlon K, Wallbanks S, Richardson PT (1996) Analysis of the beta’ subunit of DNA-dependent RNA polymerase does not support the hypothesis inferred from 16S rRNA analysis that Oenococcus oeni (formerly Leuconostoc oenos) is a tachytelic (fast-evolving) bacterium. Int J Syst Bacteriol 46:1004–1009

    PubMed  CAS  Google Scholar 

  • Müller G (1996) Kaffee, Kakao, Tee, Vanile, Tabak. In: Müller G, Holzapfel WH, Weber H (eds) Mikrobiologie der Lebensmittel: Lebensmittel pflanzlicher Herkunft. Behr’s Verlag, Hamburg, pp 431–450

    Google Scholar 

  • Mundt JO (1967) Spherical lactic acid-producing bacteria of southern-grown raw and processed vegetables. Appl Environ Microbiol 15:1303–1308

    CAS  Google Scholar 

  • Nam S-H, Choi S-H, Kang A, Kim D-W, Kim D-S, Kim RN, Kim A, Park H-S (2010a) Genome sequence of Leuconostoc fallax KCTC 3537. J Bacteriol 193:588–589

    PubMed  PubMed Central  Google Scholar 

  • Nam S-H, Choi S-H, Kang A, Kim D-W, Kim RN, Kim A, Park H-S (2010b) Genome sequence of Leuconostoc argentinum KCTC 3773. J Bacteriol 192:6490–6491

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nam S-H, Kim A, Choi S-H, Kang A, Kim D-W, Kim RN, Kim D-S, Park H-S (2011) Genome sequence of Leuconostoc carnosum KCTC 3525. J Bacteriol 193:6100–6101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nedovic VA, Durieuxb A, Van Nedervelde L, Rosseels P, Vandegans J, Plaisant A, Simon J (2000) Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells. Enzyme Microb Technol 26:834–839

    PubMed  CAS  Google Scholar 

  • Nielsen J, Prahl C, Lonvaud-Funel A (1996) Malolactic fermentation in wine by direct inoculation with freeze-dried Leuconostoc oenos cultures. Am J Enol Vitic 47:42–48

    CAS  Google Scholar 

  • Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, Andersson TS, Holzapfel WH (2007) The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int J Food Microbiol 114:168–186

    PubMed  CAS  Google Scholar 

  • Nieto-Arribas P, Seseña S, Poveda JM, Palop L, Cabezas L (2010) Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiol 27:85–93

    PubMed  CAS  Google Scholar 

  • Niven CF Jr, Evans JB (1957) Lactobacillus viridescens nov. spec., a heterofermentative species that produces a green discoloration of cured meat pigments. J Bacteriol 73:758–759

    PubMed  PubMed Central  Google Scholar 

  • Niven CF Jr, Buettner LG, Evans JB (1954) Thermal tolerance studies on the heterofermentative lactobacilli that cause greening of cured meat products. Appl Microbiol 2:26–29

    PubMed  PubMed Central  Google Scholar 

  • Oh H-M, Cho Y-J, Kim BK, Roe J-H, Kang S-O, Nahm BH, Jeong G, Han H-U, Chun J (2010) Complete genome sequence analysis of Leuconostoc kimchii IMSNU 11154. J Bacteriol 192:3844–3845

    PubMed  CAS  PubMed Central  Google Scholar 

  • Okafor N (1977) Microorganisms associated with cassava fermentation for gari production. J Appl Bacteriol 42:279–284

    Google Scholar 

  • Okafor N, Ejiofor MAN (1985) The linamarase of Leuconostoc mesenteroides, production, isolation and some properties. J Sci Food Agric 36:669–678

    CAS  Google Scholar 

  • Olano A, Chua J, Schroeder S, Minari A, La Salvia M, Hall G (2001) Weissella confusa (basonym: Lactobacillus confusus) bacteremia: a case report. J Clin Microbiol 39:1604–1607

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orberg PK, Sandine WE (1984) Common occurrence of plasmid DNA and vancomycin resistance in Leuconostoc spp. Appl Environ Microbiol 48:1129–1133

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ostovar K, Keeney PG (1973) Isolation and characterization of microorganisms involved in the fermentation of Trinidad’s cacao beans. J Food Sci 38:611–617

    Google Scholar 

  • Ouoba LII, Kando C, Parkouda C, Sawadogo-Lingani H, Diawara B, Sutherland JP (2012) The microbiology of Bandji, palm wine of Borassus akeassii from Burkina Faso: identification and genotypic diversity of yeasts, lactic acid and acetic acid bacteria. J Appl Microbiol 113(6):1428–1441

    PubMed  CAS  Google Scholar 

  • Padonou SW, Nielsen DS, Hounhouigan JD, Thorsen L, Nago MC, Jakobsen M (2009) The microbiota of Lafun, an African traditional cassava food product. Int J Food Microbiol 133:22–30

    Google Scholar 

  • Padonou SW, Schillinger U, Nielsen DS, Franz CMAP, Hansen M, Hounhouigan JD, Nago MC, Jakobsen M (2010) Weissella beninensis sp. nov., a motile lactic acid bacterium from submerged cassava fermentations, and emended description of the genus Weissella. Int J Syst Evol Microbiol 60:2193–2198

    PubMed  CAS  Google Scholar 

  • Papalexandratou Z, Falony G, Romanens E, Jimenez JC, Amores F, Daniel HM, De Vuyst L (2011a) Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional ecuadorian spontaneous cocoa bean fermentations. Appl Environ Microbiol 77:7698–7714

    PubMed  CAS  PubMed Central  Google Scholar 

  • Papalexandratou Z, Vrancken G, De Bruyne K, Vandamme P, De Vuyst L (2011b) Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiol 28:1326–1338

    PubMed  CAS  Google Scholar 

  • Papamanoli E, Tzanetakis N, Litopoulou-Tzanetaki E, Kotzekidou P (2003) Characterization of lactic acid bacteria isolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties. Meat Sci 65:859–867

    PubMed  CAS  Google Scholar 

  • Parente E, Grieco S, Crudele MA (2001) Phenotypic diversity of lactic acid bacteria isolated from fermented sausages produced in Basilicata (Southern Italy). J Appl Microbiol 90:943–952

    PubMed  CAS  Google Scholar 

  • Passos FML, Silva DO, Lopez A, Ferreira CLLF, Guimaraes WV (1984) Characterization and distribution of lactic-acid bacteria from traditional cocoa bean fermentations in Bahia, Brazil. J Food Sci 49:205–208

    Google Scholar 

  • Pederson CS (1930) Floral changes in the fermentation of sauerkraut. N Y Agric Exp Sta Techn Bull 168:137

    Google Scholar 

  • Pederson CS, Albury MN (1955) Variation among the heterofermentative lactic acid bacteria. J Bacteriol 70:702–708

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pereira CI, Romão MVS, Lolkema JS, Crespo MTB (2009) Weissella halotolerans W22 combines arginine deiminase and ornithine decarboxylation pathways and converts arginine to putrescine. J Appl Microbiol 107:1894–1902

    PubMed  CAS  Google Scholar 

  • Ramos A, Santos H (1996) Citrate and sugar cofermentation in Leuconostoc oenos, a 13C nuclear magnetic resonance study. Appl Environ Microbiol 62:2577–2585

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reguant C, Bordons A (2003) Typification of Oenococcus oeni strains by multiplex RAPD-PCR and study of population dynamics during malolactic fermentation. J Appl Microbiol 95:344–353

    PubMed  CAS  Google Scholar 

  • Robert H, Gabriel V, Fontagné-Faucher C (2009) Biodiversity of lactic acid bacteria in French wheat sourdough as determined by molecular characterization using species-specific PCR. Int J Food Microbiol 135:53–59

    PubMed  CAS  Google Scholar 

  • Rodas AM, Ferrer S, Pardo I (2003) 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst Appl Microbiol 26:412–422

    PubMed  CAS  Google Scholar 

  • Rodríguez-Nogales JM, Vila-Crespo J, Fernández-Fernández E (2012) Immobilization of Oenococcus oeni in Lentikats® to develop malolactic fermentation in wines. Biotechnol Prog 29(1):60–65

    PubMed  Google Scholar 

  • Rogosa M, Mitchell JA, Wiseman RF (1951) A selective medium for the isolation and enumeration of oral and faecal lactobacilli. J Bacteriol 62:132–133

    PubMed  CAS  PubMed Central  Google Scholar 

  • Salimnia H, Alangaden GJ, Bharadwaj R, Painter TM, Chandrasekar PH, Fairfax MR (2011) Weissella confusa: an unexpected cause of vancomycin-resistant Gram-positive bacteremia in immunocompromised hosts. Transpl Infect Dis 13:94–98

    Google Scholar 

  • Samelis J, Maurogenakis F, Metaxopoulos J (1994) Characterisation of lactic acid bacteria isolated from naturally fermented Greek dry salami. Int J Food Microbiol 23:179–196

    PubMed  CAS  Google Scholar 

  • Samelis J, Rementzis J, Tsakalidou E, Metaxopoulos J (1998) Usefulness of rapid GC analysis of cellular fatty acids for distinguishing Weissella viridescens, Weissella paramesenteroides, Weissella hellenica and some nonidentifiable, arginine negative Weissella strains of meat origin. Syst Appl Microbiol 21:260–265

    PubMed  CAS  Google Scholar 

  • Samelis J, Kakouri A, Pappa EC, Matijasic BB, Georgalaki MD, Tsakalidou E, Rogelj A (2010) Microbial stability and safety of traditional Greek Graviera cheese: characterization of the lactic acid bacterial flora and culture-independent detection of bacteriocin genes in the ripened cheeses and their microbial consortia. J Food Prot 73:1294–1303

    PubMed  CAS  Google Scholar 

  • Sánchez A, Coton M, Coton E, Herrero M, García LA, Díaz M (2012) Prevalent lactic acid bacteria in cider cellars and efficiency of Oenococcus oeni strains. Food Microbiol 32:32–37

    PubMed  Google Scholar 

  • Santos EM, Diez AM, González-Fernández C, Jaime I, Rovira J (2005) Microbiological and sensory changes in “Morcilla de Burgos” preserved in air, vacuum and modified atmosphere packaging. Meat Sci 71:249–255

    PubMed  Google Scholar 

  • São-José C, Santos S, Nascimento J, Brito-Madurro AG, Parreira R, Santos MA (2004) Diversity in the lysis-integration region of oenophage genomes and evidence for multiple tRNA loci, as targets for prophage integration in Oenococcus oeni. Virology 325:82–95

    PubMed  Google Scholar 

  • Sato H, Yanagida F, Shinohara T, Suzuki M, Suzuki K, Yokotsuka K (2001) Intraspecific diversity of Oenococcus oeni isolated during red wine-making in Japan. FEMS Microbiol Lett 202:109–114

    PubMed  CAS  Google Scholar 

  • Scheirlinck I, Van der Meulen R, Van Schoor A, Vancanneyt M, De Vuyst L, Vandamme P, Huys G (2007) Influence of geographical origin and flour type on diversity of lactic acid bacteria in traditional Belgian sourdoughs. Appl Environ Microbiol 73:6262–6269

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schillinger U, Holzapfel WH (2011) Culture media for lactic acid bacteria. In: Corry J, Curtis G, Baird R (eds) Handbook of culture media for food and water microbiology. Royal Society of Chemistry, Cambridge, UK, pp 174–192

    Google Scholar 

  • Schillinger U, Björkroth KJ, Holzapfel WH (2006) Lactic acid bacteria. In: de Blackburn CW (ed) Food spoilage microorganisms. Woodhead, Cambridge, UK, pp 541–578 (Chap 20)

    Google Scholar 

  • Schleifer KH (2009) Family V. Leuconostocaceae fam. nov. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology (The Firmicutes), vol 3, 2nd edn. Springer, Dordrecht/Heidelberg/London/New York, p 624

    Google Scholar 

  • Schmitt P, Mathot AG, Divies C (1989) Fatty acid composition of the genus Leuconostoc. Milchwissenschaft-Milk Sci Int 44:556–559

    CAS  Google Scholar 

  • Schmitt P, Vasseur C, Phalip V, Huang DQ, Diviés C, Prevost H (1997) Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides. Appl Microbiol Biotechnol 47:715–718

    PubMed  CAS  Google Scholar 

  • Shaw BG, Harding CD (1989) Leuconostoc gelidum sp. nov. and Leuconostoc carnosum sp. nov. from chill-stored meats. Int J Syst Bacteriol 39:217–223

    Google Scholar 

  • Sijpesteijn AK (1970) Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie Van Leeuwenhoek 36:335–348

    PubMed  CAS  Google Scholar 

  • Snauwaert I, Papalexandratou Z, De Vuyst L, Vandamme P (2013) Characterization of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. Int J Syst Evol Microbiol 63(Pt 5):1709–1716. doi:10.1099/ijs.0.040311-0

    PubMed  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    PubMed  CAS  Google Scholar 

  • Stamer JR (1975) Recent developments in the fermentation of sauerkraut. In: Carr JG, Cutting CV, Whiting GC (eds) Lactic acid bacteria in beverages and food. Academic, London, pp 267–280

    Google Scholar 

  • Stamer JR (1988) Lactic acid bacteria in fermented vegetables. In: Robinson RK (ed) Developments in food microbiology, vol 3. Elsevier, London, pp 67–85

    Google Scholar 

  • Steinkraus KH (1983) Lactic acid fermentation in the production of foods from vegetables, cereals and legumes. Antonie Van Leeuwenhoek 49:337–348

    PubMed  CAS  Google Scholar 

  • Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29

    PubMed  CAS  Google Scholar 

  • Tanasupawat S, Shida O, Okada S, Komagata K (2000) Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. Int J Syst Evol Microbiol 50(Pt 4):1479–1485

    PubMed  CAS  Google Scholar 

  • Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Ng J, Munro K, Alatossava T (1999) Identification of Lactobacillus isolates from the gastrointestinal tract, silage, and yoghurt by 16S-23S rRNA gene intergenic spacer region sequence comparisons. Appl Environ Microbiol 65:4264–4267

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thaochan N, Drew RA, Hughes JM, Vijaysegaran S, Chinajariyawong A (2010) Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies Bactrocera cacuminata and B. tryoni. J Insect Sci 10:1–16

    Google Scholar 

  • Tohno M, Kitahara M, Inoue H, Uegaki R, Irisawa T, Ohkuma M, Tajima K (2012) Weissella oryzae sp. nov., isolated from fermented rice grain (Oryza sativa L. subsp. japonica). Int J Syst Evol Microbiol 63(Pt 4):1417–1420

    PubMed  Google Scholar 

  • Tracey RP, Britz TJ (1987) A numerical taxonomic study of Leuconostoc oenos strains from wine. J Appl Bacteriol 63:523–532

    Google Scholar 

  • Tracey RP, Britz TJ (1989) Cellular fatty acid composition of Leuconostoc oenos. J Appl Bacteriol 66:445–456

    CAS  Google Scholar 

  • Tu R-J, Wu H-Y, Lock Y-S, Chen M-J (2010) Evaluation of microbial dynamics during the ripening of a traditional Taiwanese naturally fermented ham. Food Microbiol 27:460–467

    PubMed  CAS  Google Scholar 

  • Van Tieghem PH (1878) Sur La Gomme De Sucrerie (Leuconostoc mesenteroides). Annal de Sci Nat Bot Ser 7:180–203

    Google Scholar 

  • Vancanneyt M, Zamfir M, De Wachter M, Cleenwerck I, Hoste B, Rossi F, Dellaglio F, De Vuyst L, Swings J (2006) Reclassification of Leuconostoc argentinum as a later synonym of Leuconostoc lactis. Int J Syst Evol Microbiol 56:213–216

    PubMed  CAS  Google Scholar 

  • Vaughn RH (1985) The microbiology of vegetable fermentations. In: Wood BJB (ed) Microbiology of fermented foods, 2nd edn. Elsevier, New York, pp 49–109

    Google Scholar 

  • Vedamuthu ER (1994) The dairy Leuconostoc: use in dairy products. J Dairy Sci Am Dairy Sci Assoc 77(9):2725–2737

    Google Scholar 

  • Vela AI, Porrero C, Goyache J, Nieto A, Sanchez B, Briones V, Moreno MA, Dominguez L, Fernandez-Garayzabal JF (2003) Weissella confusa infection in primate (Cercopithecus mona). Emerg Infect Dis 9:1307–1309

    PubMed  PubMed Central  Google Scholar 

  • Vela AI, Fernández A, de Quirós YB, Herráez P, Domínguez L, Fernández-Garayzábal JF (2011) Weissella ceti sp. nov., isolated from beaked whales (Mesoplodon bidens). Int J Syst Evol Microbiol 61:2758–2762

    PubMed  CAS  Google Scholar 

  • Vigentini I, Picozzi C, Tirelli A, Giugni A, Foschino R (2009) Survey on indigenous Oenococcus oeni strains isolated from red wines of Valtellina, a cold climate wine-growing Italian area. Int J Food Microbiol 136(1):123–128

    PubMed  CAS  Google Scholar 

  • Vihavainen EJ, Johanna Björkroth K (2009) Diversity of Leuconostoc gasicomitatum associated with meat spoilage. Int J Food Microbiol 136(1):32–36

    PubMed  CAS  Google Scholar 

  • von Weymarn FNW, Kiviharju KJ, Jääskeläinen ST, Leisola MSA (2003) Scale-up of a new bacterial mannitol production process. Biotechnol Prog 19:815–821

    Google Scholar 

  • Walker DK, Gilliland SE (1987) Buttermilk manufacture using a combination of direct acidification and citrate fermentation by Leuconostoc cremoris. J Dairy Sci 70:2055–2062

    CAS  Google Scholar 

  • Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wibowo D, Eschenbruch R, Davis CR, Fleet GH, Lee TH (1985) Occurrence and growth of lactic-acid bacteria in wine: a review. Am J Enol Viticult 36:302–313

    CAS  Google Scholar 

  • Williams AM, Collins MD (1990) Molecular taxonomic studies on Streptococcus uberis types I and II. Description of Streptococcus parauberis sp. nov. J Appl Bacteriol 68:485–490

    PubMed  CAS  Google Scholar 

  • Yanagida F, Yi-Sheng C, Masatoshi Y (2007) Isolation and characterization of lactic acid bacteria from lakes. J Basic Microbiol 47:184–190

    PubMed  CAS  Google Scholar 

  • Yang D, Woese CR (1989) Phylogenetic structure of the “Leuconostocs”: an interesting case of a rapidly evolving organism. Syst Appl Microbiol 12(2):145–149

    CAS  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Schleifer K-H, Amann R, Amann R, Glöckner FO, osselló-Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    PubMed  CAS  Google Scholar 

  • Yu J, Wang WH, Menghe BLG, Jiri MT, Wang HM, Liu WJ, Bao QH, Lu Q, Zhang JC, Wang F, Xu HY, Sun TS, Zhang HP (2011) Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia. J Dairy Sci 94:3229–3241

    PubMed  CAS  Google Scholar 

  • Zakaria Y, Ariga H, Urashima T, Toba T (1998) Microbiological and rheological properties of the Indonesian traditional fermented milk Dadih. Milchwissenschaft 53:30–33

    CAS  Google Scholar 

  • Zamudio-Maya M, Narváez-Zapata J, Rojas-Herrera R (2008) Isolation and identification of lactic acid bacteria from sediments of a coastal marsh using a differential selective medium. Lett Appl Microbiol 46:402–407

    PubMed  CAS  Google Scholar 

  • Zapparoli G, Reguant C, Bordons A, Torriani S, Dellaglio F (2000) Genomic DNA fingerprinting of Oenococcus oeni strains by pulsed-field gel electrophoresis and randomly amplified polymorphic DNA-PCR. Curr Microbiol 40:351–355

    PubMed  CAS  Google Scholar 

  • Zapparoli G, Fracchetti F, Stefanelli E, Torriani S (2012) Genetic and phenotypic strain heterogeneity within a natural population of Oenococcus oeni from Amarone wine. J Appl Microbiol 113:1365–2672

    Google Scholar 

  • Zaunmüller T, Eichert M, Richter H, Unden G (2006) Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol 72:421–429

    PubMed  Google Scholar 

  • Zavaleta AI, Martinez-Murcia AJ, Rodriguez-Valera F (1996) 16S–23S rDNA intergenic sequences indicate that Leuconostoc oenos is phylogenetically homogeneous. Microbiology 142:2105–2114

    PubMed  CAS  Google Scholar 

  • Zickrick K (1996) Mikrobiologie der Käse. In: Weber H (ed) Mikrobiologie der Lebensmittel: Milch und Milchprodukte. Behr’s Verlag, Hamburg, pp 255–351

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo T. Nieminen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Nieminen, T.T., Säde, E., Endo, A., Johansson, P., Björkroth, J. (2014). The Family Leuconostocaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30120-9_208

Download citation

Publish with us

Policies and ethics