Skip to main content
Log in

Canonical commutation relations of quantum mechanics and stochastic regularity

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In a previous publication (Boletin de la Sociedad Matematica Mexicana 1975) it was established that any weakly stationary linearly regular stochastic process is unitarily equivalent to a quantum mechanical momentum evolution. The object of the present note is, as promised in the previous publication, to amplify some of the details concerning the just mentioned interesting connection, giving in particular a direct proof of the Szego-Kolmolgorov-Krein characterization of regular stationary processes. We also show that although the so-called decaying states without regeneration do not exist for unstable quantum systems, they are natural for regular stationary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gustafson, K. and Misra, B., ‘Correlations and Evolution Equations’. Proc. III Mexico-United States Symp. on Diff. Eqns., Mexico City, Jan. 1975, Boletin de la Sociedad Matematica Mexicana, 1975.

  2. KarhunenK., ‘Ueber lineare Methoden in der Wahrscheinlichkeitsrechnung’, Ann. Acad. Sci. Fennicae, A., I, 37 (1947).

    Google Scholar 

  3. CramérH., Structural and Statistical Problems for a Class of Stochastic Processes Princeton Univ. Press, Princeton, N.J., 1971.

    Google Scholar 

  4. RozanovYu. A., Stationary Random Processes, Holden-Day, San Francisco, 1967.

    Google Scholar 

  5. WilliamsD., ‘Difficulty with a Kinematic Concept of Unstable Particles; the Sz. Nagy Extension and the Mathews-Salam-Zwanziger Representation’, Commun. Math Phys. 21 (1971), 314–333.

    Google Scholar 

  6. HorwitzL., LaVitaJ., and MarchandJ., ‘The Inverse Decay Problem’, J. Math. Phys. 12 (1971), 2537–2543.

    Google Scholar 

  7. FondaL. and GhirardiG.C., Nuovo Cim. 7A (1972), 180.

    Google Scholar 

  8. SinhaK., ‘On the Decay of an Unstable Particle’, Helv. Phys. Acta. 45 (1972), 619–628.

    Google Scholar 

  9. Mackey, G. W., ‘The Theory of Group Representations’ Mimeographed notes, Univ. of Chicago (1955).

  10. JauchJ.M., Foundations of Quantum Mechanics, Addison-Wesley, Massachusetts, 1968.

    Google Scholar 

  11. HidaT., Stationary Stochastic Processes, Princeton Univ. Press., Princeton, N.J., 1970.

    Google Scholar 

  12. PutnamC., Commutation Properties of Hilbert Space Operators and Related Topics, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  13. PaleyR. and WienerN., Fourier Transforms in the Complex Domain, Amer. Math. Soc., Providence, R.I., 1934.

    Google Scholar 

  14. DymH. and McKeanH.P., Fourier Series and Integrals, Academic Press, New York, 1972.

    Google Scholar 

  15. FriedrichsK., Perturbation of Spectra in Hilbert Space, Amer. Math. Soc., Providence, R.I., 1965.

    Google Scholar 

  16. SianiJa. G., ‘Dynamical Systems with Countable Lebesgue Spectrum’, Izv. Akad. Nauk SSSR 25 (1961), 899–924.

    Google Scholar 

  17. LaxP. and PhillipsR.S., Scattering Theory, Academic Press, New York, 1967.

    Google Scholar 

  18. KallianpurG. and MandrekarV., ‘Multiplicity and Representation Theory of Purely Nondeterministic Processes”, Theorija Veroj, iee Premen 10 (1965), 533–581.

    Google Scholar 

  19. Levinson, N., Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. 26, Providence, R.I., 1940.

  20. InghamA., ‘A Note on Fourier Transforms’, J. London Math. Soc. 9 (1934), 23–32.

    Google Scholar 

  21. BoasR. and SmithiesF., ‘On the Characterization of a Distribution Function by its Fourier Transform’, Amer. J. Math. 51 (1938), 523–531.

    Google Scholar 

  22. TjøstheimD., ‘A Commutation Relation for Wide Sense Stationary Processes’, SIAM J. Appl. Math. 30 (1976), 115–122.

    Google Scholar 

  23. ErsakI., Sov. J. Nucl. Phys. 9 (1969), 263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafson, K., Misra, B. Canonical commutation relations of quantum mechanics and stochastic regularity. Lett Math Phys 1, 275–280 (1976). https://doi.org/10.1007/BF00398481

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00398481

Keywords

Navigation