Skip to main content
Log in

Association of bacteria with larvae of the gutless protobranch bivalve Solemya reidi (Cryptodonta: Solemyidae)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Rod-shaped bacteria were consistently observed by transmission electron microscopy in the locomotory test of larvae and in the perivisceral cavity of post-larvae of Solemya reidi, a gutless protobranch bivalve known to possess intracellular chemoautotrophic bacterial symbionts in the adult gill. Bacteria develop within granular vesicles in the larval test, where they either remain to be ingested at metamorphosis, or are released into the space separating the test and embryo, to be subsequently ingested through the larval mouth. In either case, bacteria lie within the perivisceral cavity following metamorphosis. Bacteria were not seen either in or on gametes or in gills of juveniles. It is hypothesized that these bacteria represent a transmission stage of the gill symbionts present in adult S. reidi and are not evident in gametes or gills of juveniles due to cryptic packaging within granular vesicles. Perpetuation of this symbiosis would therefore be assured through vertical transmission, as is typical of other marine invertebrate-bacteria endosymbioses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Anderson, W. A., Personne, P. (1976). The molluscan spermatozoan: dynamic aspects of its structure and function. Am. Zool. 16: 293–313

    Google Scholar 

  • Andrewes, C. H. (1957). Factors in virus evolution. Adv. Virus Res. 4: 1–24

    Google Scholar 

  • Bernard, F. R. (1980). A new Solemya s. str. from the northeastern Pacific (Bivalvia: Cryptodonta). Venus, Kyoto 39: 17–23

    Google Scholar 

  • Browning, H. W., Federici, B. A., Oatman, E. R. (1982). Occurrence of a disease caused by a rickettsia-like organism in a larval population of the cabbage looper, Trochoplasia ni, in southern California. Envir. Ent. 11: 550–554

    Google Scholar 

  • Buchner, P. (1965). Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York

    Google Scholar 

  • Cavanaugh, C. M. (1980). Symbiosis of chemoautotrophic bacteria and marine invertebrates. Biol. Bull. mar. biol. Lab., Woods Hole 159: p. 457

    Google Scholar 

  • Cavanaugh, C. M. (1983). Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature, Lond. 302: 58–61

    Google Scholar 

  • Cavanaugh, C. M. (1985). Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bull. biol. Soc. Wash. 6: 373–388

    Google Scholar 

  • Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., Waterbury, J. B. (1981). Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila: possible chemoautotrophic symbionts. Science, N.Y. 213: 340–342

    Google Scholar 

  • Childress, J. J., Fisher, C. R., Brooks, J. M., Kennicutt II, M. C., Bidigare, R., Andersen, A. E. (1986). A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science, N.Y. 233: 1306–1308

    Google Scholar 

  • Costerton, J. W. (1979). The role of electron microscopy in the elucidation of bacterial structure and function. A. Rev. Microbiol. 33: 459–479

    Google Scholar 

  • Dando, P. R., Southward, A. J. (1986). Chemoautotrophy in bivalve molluscs of the genus Thyasira. J. mar. biol. Ass. U.K. 66: 915–929

    Google Scholar 

  • Dando, P. R., Southward, A. J., Southward, E. C. (1986). Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proc. R. Soc. (Ser. B) 227: 227–247

    Google Scholar 

  • Dando, P. R., Southward, A. J., Southward, E. C., Terwilliger, N. B., Terwilliger, R. C. (1985). Sulphur-oxidising bacteria and haemoglobin in gills of the bivalve mollusc Myrtea spinifera. Mar. Ecol. Prog. Ser. 23: 85–98

    Google Scholar 

  • Devauchelle, G., Meynadier, G., Vago, C. (1972). Etude ultrastructurale du cycle de multiplication de Rickettsiella melolonthae (Krieg), Philip, dans les hémocytes de son hôte. J. Ultrastruct. Res. 38: 134–148

    Google Scholar 

  • Devauchelle, G., Vago, C., Meynadier, G. (1971). Ultrastructure comparée de Rickettsiella melolonthae (Rickettsiales Wolbachiae) et de l'agent de la lymphogranulomatose vénérienne (Rickettsiales Chlamydiaceae). C. r. hebd. Séanc. Acad. Sci., Paris 272: 2972–2974

    Google Scholar 

  • Elston, R. (1980a). Functional anatomy, histology and ultrastructure of the soft tissues of the larval American oyster, Crassostrea virginica. Proc. natn. Shellfish. Ass. 70:65–93

    Google Scholar 

  • Elston, R. (1980b). Functional morphology of the coelomocytes of the larval oyster (Crassostrea virginica and Crassostrea gigas). J. mar. biol. Ass. U.K. 60: 947–957

    Google Scholar 

  • Elston, R. (1986). Occurrence of branchial rickettsiales-like infections in two bivalve molluscs, Tapes japonica and Patinopecten yessoensis, with comments on their significance. J. Fish Dis. 9: 69–71

    Google Scholar 

  • Elston, R. A., Peacock, M. G. (1984). A rickettsiales-like infection in the Pacific razor clam, Siliqua patula. J. Invertebr. Path. 44: 84–96

    Google Scholar 

  • Federici, B. A. (1982). A new type of insect pathogen in larvae of the clover cutworm, Scotogramma trifolii. J. Invertebr. Path. 40:41–54

    Google Scholar 

  • Felbeck, H. (1981). Chemoautotrophic potential of the hydrothermal vent tube worm Riftia pachyptila Jones (Vestimentifera). Science, N.Y. 213: 336–338

    Google Scholar 

  • Felbeck, H. (1983). Sulfide oxidation and carbon fixation by the gutless clam Solemya reidi: an animal-bacteria symbiosis. J. comp. Physiol. (Sect. B) 152: 3–11

    Google Scholar 

  • Felbeck, H., Childress, J. J., Somero, G. N. (1981). Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature, Lond. 293: 291–293

    Google Scholar 

  • Felbeck, H., Childress, J. J., Somero, G. N. (1983a). Biochemical interactions between molluscs and their algal and bacterial symbionts. In: Hochachka, P. W. (ed.) The Mollusca, Vol. 2, Environmental biochemistry and physiology. Academic Press, New York, p. 331–358

    Google Scholar 

  • Felbeck, H., Liebezeit, G., Dawson, R., Giere, O. (1983b). CO2 fixation in tissues of marine oligochaetes (Phallodrilus leukodermatus and P. planus) containing symbiotic, chemoautotrophic bacteria. Mar. Biol. 75: 187–191

    Google Scholar 

  • Fiala-Médioni, A., Métivier, C. (1986). Ultrastructure of the gill of the hydrothermal vent bivalve Calyptogena magnifica, with a discussion of its nutrition. Mar. Biol. 90: 215–222

    Google Scholar 

  • Fiala-Médioni, A., Métivier, C., Herry, A., Le Pennec, M. (1986). Ultrastructure of the gill of the hydrothermal-vent mytilid Bathymodiolus sp. Mar. Biol. 92: 65–72

    Google Scholar 

  • Fisher, C. R., Childress, J. J. (1986). Translocation of fixed carbon from symbiotic bacteria to host tissues in the gutless bivalve Solemya reidi. Mar. Biol. 93: 59–68

    Google Scholar 

  • Fisher, M. R., Hand, S. C. (1984). Chemoautotrophic symbionts in the bivalve Lucina floridana from seagrass beds. Biol. Bull. mar. biol. Lab., Woods Hole 167: 445–459

    Google Scholar 

  • Franzen, A. (1983). Ultrastructural studies of spermatozoa in three bivalve species with notes on evolution of elongated sperm nucleus in primitive spermatozoa. Gamete Res. 7: 199–214

    Google Scholar 

  • Gallissian, M.-F., Vacelet, J. (1976). Ultrastructure de quelques études de l'ovogenèse de spongaires de genre Verongia (Dictyoceratida). Annls Sci. nat. (sér. b: Zool.) 18: 381–404

    Google Scholar 

  • Giere, O., Langheld, C. (1987). Structural organisation, transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes. Mar. Biol. 93: 641–650

    Google Scholar 

  • Götz, P. (1972). “Rickettsiella chironomi”: an unusual bacterial pathogen which reproduces by multiple cell division. J. Invertebr. Path. 20: 22–30

    Google Scholar 

  • Gustafson, R. G., Reid, R. G. B. (1986). Development of the pericalymma larva of Solemya reidi (Bivalvia: Cryptodonta: Solemyidae) as revealed by light and electron microscopy. Mar. Biol. 93: 411–427

    Google Scholar 

  • Gustafson, R. G., Reid, R. G. B. (1988). Larval and post-larval morphogenesis in the gutless protobranch bivalve Solemya reidi (Cryptodonta: Solemyidae). Mar. Biol. 97: 373–387

    Google Scholar 

  • Hand, S. C., Somero, G. N. (1983). Energy metabolism pathways of hydrothermal vent animals: adaptations to a food-rich and sulfide-rich deep-sea environment. Biol. Bull. mar. biol. Lab., Woods Hole 165: 167–181

    Google Scholar 

  • Huger, A. M., Krieg, A. (1967). New aspects of the mode of reproduction of Rickettsiella organisms in insects. J. Invertebr. Path. 9:442–445

    Google Scholar 

  • Kellen, W. R., Lindegren, J. E., Hoffmann, D. F. (1972). Developmental stages and structure of a Rickettsiella in the navel orangeworm, Paramyelois transitella (Lepidoptera: Phyeitidae). J. Invertebr. Path. 20: 193–199

    Google Scholar 

  • Kordova, N., Rosenberg, M., Mrena, E. (1965). Die Vermehrung der Rickettsia prowazeki in L-Zellen. II. Elektronenmikroskopische Untersuchungen an infizierten Gewebezellen in Dünnschnitten. Arch. ges. Virusforsch. 15: 707–720

    Google Scholar 

  • Larsson, R. (1982). A rickettsial pathogen of the amphipod Rivulogammarus pulex. J. Invertebr. Path. 40: 28–35

    Google Scholar 

  • Lauckner, G. (1983). Diseases of Mollusca: Bivalvia. In: Kinne, O. (ed.) Diseases of marine animals. Vol. II. Introduction, Mollusca: Bivalvia to Scaphopoda. Biologische Anstalt Helgoland, Hamburg, p. 477–961

    Google Scholar 

  • Le Pennec, M., Hily, A. (1984). Anatomie, structure et ultrastructure de la branchie d'un Mytilidae des sites hydrothermaux du Pacifique oriental. Oceanol. Acta 7: 517–523

    Google Scholar 

  • Lévi, C., Lévi, P. (1976). Embryogenese de Chondrosia reniformis (Nardo) démosponge ovipare et transmission des bactéries symbiotiques. Annls Sci. nat. (sér. b: Zool.) 18: 367–380

    Google Scholar 

  • Louis, C., Yousif, A., Vago, C., Nicolas, G. (1977). Étude par cytochimie et cryodécapage de l'ultrastructure d'une Rickettsiella de crustacé. Ann. Microbiol. (Inst. Pasteur) 128B: 177–205

    Google Scholar 

  • Meyers, T. R. (1979). Preliminary studies on a chlamydial agent in the digestive diverticulum epithelium of hard clams Mercenaria mercenaria (L.) from Great South Bay, N.Y. J. Fish Dis. 2: 179–189

    Google Scholar 

  • Morel, G. (1977). Étude d'une Rickettsiella (Rickettsie) se développant chez un arachnide, l'araignée Pisaura mirabilis. Annls Microbiol. (Inst. Pasteur, Paris) 128 A: 49–59

    Google Scholar 

  • Pierantoni, U. (1921). Gli organi luminosi simbiotici ed il loro ciclo ereditario in Pyrososma giganteum. Pubbl. Staz. zool. Napoli 3: 191–221

    Google Scholar 

  • Powell, M. A., Somero, G. N. (1985). Sulfide oxidation occurs in the animal tissue of the gutless clam, Solemya reidi. Biol. Bull. mar. biol. Lab., Woods Hole 169: 164–181

    Google Scholar 

  • Powell, M. A., Somero, G. N. (1986). Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of Solemya reidi. Science, N.Y. 233: 563–566

    Google Scholar 

  • Reid, R. G. B. (1980). Aspects of the biology of a gutless species of Solemya (Bivalvia: Protobranchia). Can. J. Zool. 58: 386–393

    Google Scholar 

  • Reid, R. G. B. (In press). Evolutionary implications in sulphide-oxidizing symbioses in bivalves. Proc. 9th int. malac. Congr. (Edinburgh, 1986)

  • Reid, R. G. B., Bernard, F. R. (1980). Gutless bivalves. Science, N.Y. 208: 609–610

    Google Scholar 

  • Reid, R. G. B., Brand, D. G. (1986). Sulfide-oxidizing symbiosis in lucinaceans: implications for bivalve evolution. Veliger 29: 3–24

    Google Scholar 

  • Rosenberg, M., Kordova, N. (1962). Multiplication of Coxiella burneti in Detroit-6 cell cultures. Acta virol., Prague 6: 176–180

    Google Scholar 

  • Schmaljohann, R., Flügel, H. J. (1987). Methane-oxidizing bacteria in Pogonophora. Sarsia 72: 91–98

    Google Scholar 

  • Schweimanns, M., Felbeck, H. (1985). Significance of the occurrence of chemoautotrophic bacterial endosymbionts in lucinid clams from Bermuda. Mar. Ecol. Prog. Ser. 24: 113–126

    Google Scholar 

  • Southward, E. C. (1982). Bacterial symbionts in Pogonophora. J. mar. biol. Ass. U.K. 62: 889–906

    Google Scholar 

  • Southward, E. C. (1986). Gill symbionts in thyasirids and other bivalve molluscs. J. mar. biol. Ass. U.K. 66: 899–914

    Google Scholar 

  • Southward, A. J., Southward, E. C., Dando, P. R., Barrett, R. L., Ling, R. (1986). Chemoautotrophic function of bacterial symbionts in small Pogonophora. J. mar. biol. Ass. U.K. 66: 415–437

    Google Scholar 

  • Southward, A. J., Southward, E. C., Dando, P. R., Rau, G. H., Felbeck, H., Flügel, H. (1981). Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature, Lond. 293: 616–620

    Google Scholar 

  • Vacelet, J., Donadey, C. (1977). Electron microscope study of the association between some sponges and bacteria. J. exp. mar. Biol. Ecol. 30: 301–314

    Google Scholar 

  • Weiss, E. (1974). Genus X. Rickettsiella Philip 1956, 267. In: Buchanan, R. E., Gibbons, N. E. (eds.) Bergey's manual of determinative bacteriology. 8th edn. Williams and Wilkins, Baltimore, p. 901–903

    Google Scholar 

  • Wilkinson, C. R. (1978). Microbial association in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar. Biol. 49: 177–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Harbor Branch Oceanographic Institution Contribution No. 602

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafson, R.G., Reid, R.G.B. Association of bacteria with larvae of the gutless protobranch bivalve Solemya reidi (Cryptodonta: Solemyidae). Mar. Biol. 97, 389–401 (1988). https://doi.org/10.1007/BF00397769

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397769

Keywords

Navigation