Skip to main content
Log in

Veränderungen des Nucleoproteids unter dem Einfluß von Auxin und Ascorbinsäure bei der Wurzelneubildung an Erbsenepikotylen

Changes in the nucleoprotein influenced by auxin and ascorbic acid in the course of root formation in pea epicotyls

  • Published:
Planta Aims and scope Submit manuscript

Summary

The melting point (T m) of nucleoproteins in root forming pea epicotyls is lowered during the first 48 h after culture initiation. When histone is externally applied to the epicotyls during this period, the decrease of T m is greatly diminished. The T m declines with increasing IAA-concentrations. The lowering of the T m can be brought about also by binding of small amounts of IAA to reconstituted or native nucleoproteins at pH> 8,0 in vitro. Furthermore, IAA can diminish the T m of denatured and native DNA. Histone which is bound to small amounts of IAA is no longer able to inhibit root formation significantly after being applied to regenerating pea epicotyls. Therefore it appears that IAA can partly loosen the bindings of histone to DNA and the bindings of DNA to DNA in the double helix by direct binding to both components of the nucleoprotein. The association of IAA and nucleoproteids seems to be effected by ionic bonds.

Like IAA, ascrobic acid also diminishes the binding capacity of histone to DNA in vitro, but in this process the structure of the DNA double helix does not become unstable. Upon being applied to regenerating pea epicotyls, ascorbic acid does not induce root formation itself, but it intensifies IAA-induced root formation when applied during the time of DNA-activity.

The results are interpreted to mean that IAA acts as a true initiator of RNA-synthesis, whereas ascorbic acid probably intensifies otherwise induced DNA-activities by binding of excessive amounts of histone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Allfrey, V. G., R. Faulkner, and A. E. Mirsky: Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. nat. Acad. Sci. (Wash.) 51, 786–794 (1964).

    Google Scholar 

  • Bonner, J., M. E. Dahmus, D. Fambrough, R. C. Huang, K. Marushige, and D. Y. H. Tuan: The biology of isolated chromatin. Science 159, 47–56 (1968).

    Google Scholar 

  • Bopp, M.: Entwicklungsphysiologie. In: Fortschritte der Botanik, S. 144–159. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Bujard, H., u. E. Harbers: Untersuchungen an Nucleohistonen. I. Beobachtungen bei thermischer Denaturierung. Z. Naturforsch. 20b, 719–720 (1965).

    Google Scholar 

  • Fellenberg, G.: Hemmung der Wurzelbildung an etiolierten Erbsenepikotylen durch Bromuracil und Histon. Planta (Berl.) 64, 287–290 (1965).

    Google Scholar 

  • —: Die Hemmung auxininduzierter Wurzelbildung an etiolierten Erbsenepikotylen mit Histon und Antimetaboliten der RNS- und Proteinsynthese. Planta (Berl.) 71, 27–42 (1966).

    Google Scholar 

  • —: Möglichkeiten der Regulierung differentieller DNS-Aktivitäten bei höheren Pflanzen durch Histon. Planta (Berl.) 76, 252–268 (1967).

    Google Scholar 

  • Fredericq, E., and C. Houssier: Physico-chemical properties of native and recombined calf thymus nucleohistones. Europ. J. Biochem. 1, 51–60 (1967).

    Google Scholar 

  • Guillot, A.: Relations entre rhizogenèse et variations de la tenuer des tissues en acides nucléiques dans les boutures de jeunes plantes étiolées de tomate (Lycopersicum esculentum Miller). C. R. Acad. Sci. (Paris), Sér. D 263, 358–361 (1966).

    Google Scholar 

  • Hess, D.: Genetik. III. Funktion. In: Fortschritte der Botanik, S. 214–236. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Huang, R. C. C., J. Bonner, and K. Murray: Physical and biological properties of soluble nucleohistones. J. molec. Biol. 8, 54–64 (1964).

    Google Scholar 

  • Juilliard, B.: Interaction de l'auxine et de la gibbérelline sur la rhizogenèse des boutures de Vigne (Vitis vinifera L.). C. R. Acad. Sci. (Paris) 258, 5716–5719 (1964).

    Google Scholar 

  • Key, J. L., and J. C. Shannon: Enhancement by auxin of ribonucleic acid synthesis in excised soybean hypocotyl tissue. Plant Physiol. 39, 360–364 (1964).

    Google Scholar 

  • Lang, A.: Plant growth regulation. Science 157, 589–592 (1967).

    Google Scholar 

  • Liao S. H., and R. H. Hamilton: Intracellular localisation of growth hormones in plants. Science 151, 822–824 (1966).

    Google Scholar 

  • Marmur, J., and P. Doty: Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. molec. Biol. 5, 109–118 (1962).

    Google Scholar 

  • Masuda, Y.: Auxin-induced growth of tuber tissue of Jerusalem artichoke. II. The relation to protein and nucleic acid metabolism. Plant Cell Physiol. 7, 75–91 (1966).

    Google Scholar 

  • Maurer, H. R., and G. R. Chalkley: Some properties of a nuclear binding site of estradiol. J. molec. Biol. 27, 431–441 (1967).

    Google Scholar 

  • Overbeek, J. v.: Plant hormones and regulators. Gibberellins, cytokinins and auxins may regulate plant growth via nucleic acid and enzyme synthesis. Science 152, 721–731 (1966).

    Google Scholar 

  • Price, C. E.: Ascorbate stimulation of RNA synthesis. Nature (Lond.) 212, 1481 (1966).

    Google Scholar 

  • Roychondhury, R., and S. P. Sen: Studies on mechanism of auxin action: Auxin regulation of nucleic acid metabolism in pea internodes and coconut milk nuclei. Physiol. Plant. (Kbh.) 17, 352–362 (1964).

    Google Scholar 

  • Schopfer, P.: Der Einfluß von Phytochrom auf die stationären Konzentrationen von Ascorbinsäure und Dehydroascorbinsäure beim Senfkeimling (Sinapis alba L.). Planta (Berl.) 69, 158–177 (1966).

    Google Scholar 

  • Skoog, F.: Growth factors, polarity and morphogenesis. Union internationale des Sciences biologiques premier colloque international sur la physiologie des cultures de tissus végétaux. Briançon 1954, 201–213 (1955).

  • Sluyser, M.: Effect of testosterone on the binding of prostate histone to DNA in vitro. Biochem. biophys. Res. Commun. 22, 336–339 (1966a).

    Google Scholar 

  • —: Binding of hydrocortisone to rat liver histones. J. molec. Biol. 19, 591–595 (1966b).

    Google Scholar 

  • Stange, L., u. H. Kleinkauf: Der Zeitpunkt der DNS-Synthese bei der Embryo nalisierung von Zellen des Lebermooses Riella in bezug auf RNS-Synthese und Kernteilung. Planta (Berl.) 80, 280–287 (1968).

    Google Scholar 

  • Stichel, E.: Gleichzeitige Induktion von Wurzeln und Sprossen an in vitro kultivierten Gewebestücken von Cyclamen persicum. Planta (Berl.) 53, 293–317 (1959).

    Google Scholar 

  • Wirth, K.: Organbildung an in vitro kultivierten Blattstücken von Begonia rex. Planta (Berl.) 54, 265–293 (1960).

    Google Scholar 

  • Wurm, G.: Vergleichende Untersuchungen über Wachstum und Organbildung an Segmenten pflanzlicher Speicherorgane bei Kultur in vitro. Flora (Jena) 149, 43–76 (1960).

    Google Scholar 

  • Zubay, G., and M. H. F. Wilkins: A note on reversible dissociation of deoxyribonucleohistone. J. molec. Biol. 9, 246–249 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Teil einer Habilitationsschrift der Fakultät für Gartenbau und Landeskultur an der Technischen Universität Hannover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellenberg, G. Veränderungen des Nucleoproteids unter dem Einfluß von Auxin und Ascorbinsäure bei der Wurzelneubildung an Erbsenepikotylen. Planta 84, 324–338 (1969). https://doi.org/10.1007/BF00396424

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396424

Navigation