Skip to main content
Log in

An experimental study of the first normal stress difference — shear stress relationship in simple shear flow for concentrated shear thickening suspensions

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

For many polymeric solutions in a simple shear flow a plot of the logarithm of the first normal stress difference N 1 against the logarithm of the shear stress σ, for a range of temperatures results in a linear relationship. For such polymer solutions these plots yield a straight line of slope very close to 2 when measured at low shear rates. This relationship is tested against a polymer solution (polyacrylamide in a 50/50 mixture of glycerol/water), a polymer melt (polyethylene), and three concentrated suspensions. These are Superclay (supplied by English China Clays, Cornwall, U.K.) in water, polyvinylchloride in dioctylphthalate and polystyrene latex in water, at volume concentrations of 40% 48%, and 60%, respectively. It was found that the log N 1 — log σ relationship is applicable to the polymer solution and melt over a significant range of shear rates and temperatures. In the cases of concentrated suspensions the relationship holds to the point of onset of the shear thickening behaviour. Beyond this point a different relationship exists, however, flow instabilities are apparent. A comment on the contribution of N 1 and N 2 to the flow instabilities is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ait-Kadi A, Chaplin L, Carreau PJ (1989) Polym Eng Sci 29:1265–1272

    Google Scholar 

  • Almog Y, Reich S, Levy M (1982) Brit Polym J 14:131

    Google Scholar 

  • Barnes HA, Edwards MIT, Woodcock LV (1987) Chem Eng Sci 42:951

    Google Scholar 

  • Barnes HA (1980) Dispersion rheology. A survey of industrial problems and academic progress. London

  • Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology, pp 63–64, Elsevier, Amsterdam

    Google Scholar 

  • Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology, p 58, Elsevier, Amsterdam

    Google Scholar 

  • Bernd LH (1968) J Lub Tech July:561–569

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymer liquids, vol 1, pp 103–105, Wiley, New York

    Google Scholar 

  • Cogswell FN (1981) Polymer melt rheology, Wiley, London, pp 103–104

    Google Scholar 

  • Engstrom G, Rigdahl M (1989) Nord Pulp and Paper Res J 3:214–218

    Google Scholar 

  • Graesley WM, Segal L (1970) AIChE J 16:261–267

    Google Scholar 

  • Hoffman RL (1972) Trans Soc Rheol 16:155

    Google Scholar 

  • Hoffman RL (1974) J Colloid Interface Sci 46:491–506

    Google Scholar 

  • Hopkins AJ, Woodock LV (1990) J Chem Soc Farad Trans 86:2121, 86:2593, 86:3419

    Google Scholar 

  • Hutton JF (1963) Nature 200:646

    Google Scholar 

  • Hutton JF (1965) Proc Roy Soc Lond Ser A 287:222

    Google Scholar 

  • Hutton JF (1969) Rheol Acta 8:54

    Google Scholar 

  • Jacovic MS, Pollock D, Porter RS (1979) J Appl Polym Sci 23:517–527

    Google Scholar 

  • Jomha AI, Merrington A, Woodcock LV, Barnes HA, Lips A (1991) Powder technology, 65:343–370

    Google Scholar 

  • Jomha AI (1987) PhD Thesis, University of Bradford, UK

  • Jomha AI, Woodcock LV (1990) Trans I Chem E Part A 68:550–557

    Google Scholar 

  • Keller DS, Keller DV Jr (1991) J Rheol 35:1583–1607

    Google Scholar 

  • Kuliche WM, Wall V (1985) Chem Eng Sci 40:961

    Google Scholar 

  • Larson RG (1992) Rheol Acta 31:213

    Google Scholar 

  • Laun HM, Bung R, Hess S, Loose W, Hess O, Hahn K, Hadicke E, Hingmann R, Schmidt F, Lindner P (1992) J Rheol 36:743–787

    Google Scholar 

  • Laun HM (1988) Xth Int Congr Rheol (Sydney) 1:37

    Google Scholar 

  • Lee CS, Trip BC, Magda JJ (1992) Rheol Acta 31:306

    Google Scholar 

  • Lodge AS, Al-Hadithi TSR, Walters K (1987) Rheol Acta 26:516–521

    Google Scholar 

  • Merrington A (1991) PhD Thesis, University of Bradford,

  • Meister BJ, Biggs RD (1969) AIChEJ 15:643–645

    Google Scholar 

  • Ohl N, Gleissle W (1992) Rheol Acta 31:294

    Google Scholar 

  • Reynolds PA, Reid C (1991) Langmuir 7:89–94

    Google Scholar 

  • Tanner RI, Keentok M (1983) J Rheol 27:47

    Google Scholar 

  • Wagstaff I, Chaffey CE (1977) J Colloid Interface Sci 59:53–75

    Google Scholar 

  • Walters K (1980) Rheometry industrial applications, p 14, Wiley, New York

    Google Scholar 

  • Walters K (1975) Rheometry. Chapman and Hall, London

    Google Scholar 

  • Willey SJ, Macosko CW (1978) J Rheol 22:525–545

    Google Scholar 

  • Williams MC (1967) AIChE J 13:955–961

    Google Scholar 

  • Woodcock LV (1986) J Non-Newtonian Fluid Mech 19:349–355

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jomha, A.I., Reynolds, P.A. An experimental study of the first normal stress difference — shear stress relationship in simple shear flow for concentrated shear thickening suspensions. Rheol Acta 32, 457–464 (1993). https://doi.org/10.1007/BF00396176

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396176

Key words

Navigation