Skip to main content
Log in

Susceptibility to mercurials of clinical Pseudomonas aeruginosa isolated in México

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Susceptibility to inorganic mercuric ions and to organomercurials of 237 Pseudomonas aeruginosa clinical strains isolated in Mexico was determined by agar dilution tests. Resistant strains fell into two classes: i) narrow-spectrum resistant strains (27% of total isolates) resistant only to mercuric ions and to merbromin, and most grouped in pyocin type 1; and ii) broad-spectrum resistant strains (5%) with additional resistances to thimerosal, phenylmercury, methylmercury and p-hydroxymercuribenzoate, that belonged mostly to pyocin type 10. Mercurial resistant isolates showed a higher proportion of resistance to antibiotics and metals than did mercurial sensitive isolates, and broad-spectrum resistant strains had the highest frequency of resistance to antibiotics and to tellurite and arsenate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cenci, G., G. Morozzi, F. Scazzocchio & A. Morosi (1982) Antibiotic and metal resistance of Escherichia coli isolates from different environmental sources. Zentralblatt fur Bakteriologie und Hygiene (Abteilung I, Originale C) 3: 440–449

    Google Scholar 

  • Cervantes-Vega, C., J. Chávez & M. G. Rodríguez (1986) Antibiotic susceptibility of clinical isolates of Pseudomonas aeruginosa. Antonie van Leeuwenhoek 52: 319–324

    Google Scholar 

  • Cowan, S. T. (1974) Cowan and Steel's manual for the identification of medical bacteria, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ericsson, H. M. & J. C. Sherris (1971) Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathologica Microbiologica Scandinavica (Section B Supplement) 217: 1–90

    Google Scholar 

  • Govan, J. R. W. (1978) Pyocin-typing of Pseudomonas aeruginosa. In: T. Bergan & J. R. Norris (Eds) Methods in Microbiology 10: 61–91 Academic Press, London

    Google Scholar 

  • Groves, D. J. & F. E. Young (1975) Epidemiology of antibiotic and heavy metal resistance in bacteria: resistance patterns in staphylococci isolated from populations not known to be exposed to heavy metals. Antimicrobial Agents and Chemotherapy 7: 614–621

    Google Scholar 

  • Hall, B. M. (1970) Mercury resistance of Staphylococcus aureus. Journal of Hygiene 68: 121–129

    Google Scholar 

  • Khesin, R. B. & E. V. Karasyova (1984) Mercury-resistant plasmids in bacteria from a mercury and antimony deposit area. Mol. Gen. Genet. 197: 280–285

    Google Scholar 

  • Nakahara, H., T. Ishikawa, Y. Sarai, I. Kondo & S. Mitsuhashi (1977a) Frequency of heavy-metal resistance in bacteria from inpatients in Japan. Nature (London) 266: 165–167

    Google Scholar 

  • Nakahara, H., T. Ishikawa, Y. Sarai, I. Kondo, H. Kozukue & S. Silver (1977b) Linkage of mercury, cadmium, and aresenate and drug resistance in clinical isolates of Pseudomonas aeruginosa. Applied and Environmental Microbiology 33: 975–976

    Google Scholar 

  • Nelson, J. D., W. Blair, F. E. Brinckman, R. R. Colwell & W. P. Iverson (1973) Biodegradation of phenylmercuric acetate by mercury-resistant bacteria. Applied Microbiology 26: 321–326

    Google Scholar 

  • Novick, R. P. & C. Roth (1968) Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J. Bacteriol. 95: 1335–1342

    Google Scholar 

  • Porter, F. D., S. Silver, C. Ong & H. Nakahara (1982) Selection for mercurial resistance in hospital settings. Antimicrobial Agents and Chemotherapy 22: 852–858

    Google Scholar 

  • Robinson, J. B. & O. H. Tuovinen (1984) Mechanisms of microbial resistance and detoxification of mercury and organomercurial compounds: physiological, biochemical, and genetic analyses. Microbiological Reviews 48: 95–124

    Google Scholar 

  • Silver, S. (1981) Mechanisms of plasmid-determined heavy metal resistances. In: S. B. Levy, R. C. Clowes & E. L. Koenig (Eds) Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmids (pp. 179–189) Plenum Press, New York

    Google Scholar 

  • Summers, A. O., G. A. Jacoby, M. N. Swartz, G. McHugh and L. Sutton (1978) Metal cation and oxyanion resistances in plasmids of gram-negative bacteria. In: D. Schlessinger, (Ed) Microbiology-1978 (pp. 128–131) American Society for Microbiology, Washington, DC

    Google Scholar 

  • Timoney, J. F., J. Port, J. Giles & J. Spanier (1978) Heavy-metal and antibiotic resistance in the bacterial flora of sediments of New York Bight. Applied and Environmental Microbiology 36: 465–472

    Google Scholar 

  • Walker, J. D. & R. R. Colwell (1974) Mercury-resistant bacteria and petroleum degradation. Applied Microbiology 27: 285–287

    Google Scholar 

  • Weiss, A. A., J. L. Schottel, D. L. Clark, R. G. Beller & S. Silver (1978) Mercury and organomercurial resistance with enteric, staphylococcal, and pseudomonad plasmids. In: D. Schlessinger (Ed) Microbiology-1978 (pp. 121–124) American Society for Microbiology, Washington, DC

    Google Scholar 

  • Witte, W., N. Van Dip & R. Hummel (1980) Resistance against mercury and cadmium in Staphylococcus aureus of different ecological origin. Zeitschrift für Allgemeine Mikrobiologie 20: 517–521

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervantes-Vega, C., Chávez, J. Susceptibility to mercurials of clinical Pseudomonas aeruginosa isolated in México. Antonie van Leeuwenhoek 53, 253–259 (1987). https://doi.org/10.1007/BF00393932

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393932

Key words

Navigation