Skip to main content
Log in

Inorganic-carbon uptake by the marine diatom Phaeodactylum tricornutum

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Air-grown cells of the marine diatom Phaeodactylum tricornutum showed only 10% of the carbonic-anhydrase activity of air-grown Chlamydomonas reinhardtii. Measurement of carbonic-anhydrase activity using intact cells and cell extracts showed all activity was intracellular in Phaeodactylum. Photosynthetic oxygen evolution at constant inorganic-carbon concentration but varying pH showed that exogenous CO2 was poorly utilized by the cells. Sodium ions increased the affinity of Phaeodactylum for HCO -3 and even at high HCO -3 concentrations sodium ions enhanced HCO -3 utilization. The internal inorganic-carbon pool (HCO -3 +CO2] was measured using a silicone-oil-layer centrifugal filtering technique. The internal [HCO -3 +CO2] concentration never exceeded 15% of the external [HCO -3 +CO2] concentration even at the lowest external concentrations tested. It is concluded that an internal accumulation of inorganic carbon relative to the external medium does not occur in P. tricornutum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Hepes:

4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid

References

  • Badger, M.R., Kaplan, A., Berry, J.A. (1980) Internal inorganic carbon pool of Chlamydomonas reinhardtii Evidence for a carbon dioxide concentrating mechanism. Plant Physiol. 66, 407–413

    Google Scholar 

  • Beardall, J., Morris, I. (1975) Effect of environmental factors on photosynthesis patterns in Phaeodactylum tricornuutum (Bacillariophyceae). II. Effect of oxygen. J. Phycol. 11, 430–434

    Google Scholar 

  • Beardall, J., Mukerji, D., Glover, H.E., Morris, I. (1976) The path of carbon is photosynthesis by marine phytoplankton. J. Phycol. 12, 409–417

    Google Scholar 

  • Beardall, J., Raven, J.A. (1981) Transport of inorganic carbon and the CO2 concentrating mechanism in Chlorella emersonii (Chlorophyceae) J Phycol. 19, 134–141

    Google Scholar 

  • Berry, J., Boynton, J., Kaplan, A., Badger, M. (1976) Growth and photosynthesis of Chlamydomonas reinhardtii as a function of CO2 concentration. Carnegie Inst. Washington yearb. 75, 423–432

    Google Scholar 

  • Bliss, G.I., James, A.T. (1966) Fitting the rectangular hyperbola. Biometrics 22,573–602

    Google Scholar 

  • Birmingham, B.C., Coleman, B. (1979) Measurement of carbon dioxide compensation points of freshwater algae. Plant Physiol. 64, 892–895

    Google Scholar 

  • Briggs, C.E., Whittingham, C.P. (1952) Factors affecting the rate of photosynthesis of Chorella at low concentrations of carbon dioxide and in high illumination. New Phytol. 51, 236–249

    Google Scholar 

  • Codd, G.A., Lord, J.M., Merrett, M.J. (1969) The glycolate oxidising enzyme of algae. FEBS Lett. 5, 341–342

    Google Scholar 

  • Coleman, J.R., Berry, J.A., Togasaki, R.K., Grossman, R.A. (1984) Identification of extracellular carbonic anhydrase of Chlamydomonas reinhardtii. Plant Physiol. 76, 472–477

    Google Scholar 

  • Findenegg, G.R. (1976) Correlations between accessibility of carbonic anyhdrase for external substrate and regulation of photosynthetic use of CO2 and HCO3 by Scenedesmus obliquus. Z. Pflanzenphysiol. 79, 428–437

    Google Scholar 

  • Findenegg, G.R., Fischer, K. (1978) Apparent photorespiration of Scenedesmus obliquus: increase during adaptation to low CO2 level. Z. Pflanzenphysiol. 89, 363–371

    Google Scholar 

  • Hartree, E.F. (1972) A modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48, 422–427

    Google Scholar 

  • Holdsworth, E.S., Bruck, K. (1977) Enzymes concerned with β-carboxylation in marine phytoplankter. Purfication and properties of phosphoenolpyruvate carboxykinase. Arch. Biochem. Biophys. 182, 87–94

    Google Scholar 

  • Kaplan, A., Volokita, M., Zenvirth, D, Reinhold, L. (1984) An essential role for sodium in the bicarbonate transporting system of the cyanobacterium Anabaena variabilis. FEBS Lett. 176, 166–168

    Google Scholar 

  • Kerby, N.W., Raven, J.A. (1985) Transport and fixation of inorganic carbon by marine algae. Adv. Bot. Res. 11, 71–123

    Google Scholar 

  • Kimpel, D.L., Togasaki, R.K., Miyachi, S. (1983) Carbonic anhydrase in Chlamydomonas reinhardtii. I. Localization. Plant Cell Physiol. 24, 255–259

    Google Scholar 

  • Lloyd, N.D.H., Canvin, D.T., Culver, D.A. (1977) Photosynthesis and photorespiration in algae. Plant Physiol. 59, 936–940

    Google Scholar 

  • Marcus, Y., Volokita, M., Kaplan, A. (1984) The location of the transporting system for inorganic carbon and the nature of the form translocated in Chlamydomonas reinhardtii. J. Exp. Bot. 35, 1136–1144

    Google Scholar 

  • Miller, A.G., Canvin, D.T. (1985) Distinction between HCO -3 and CO2-dependent photosynthesis in the cyanobacterium Synechococcus leopoliensis based on the selective response of HCO -3 transport to Na+. FEBS Lett. 187, 29–32

    Google Scholar 

  • Miller, A.G., Turpin, D.H., Canvin, D.T. (1984) Na+ requirement for growth, photosynthesis, and pH regulation in the alkalotolerant cyanobacterium Synechococcus leopoliensis. J. Bacteriol. 159, 100–106

    Google Scholar 

  • Moroney, J.V., Husic, H.D., Tolbert, N.E. (1985) Effect of carbonic anhydrase inhibitors an inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol. 79, 177–183

    Google Scholar 

  • Patel, B.N., Merrett, M.J. (1986) Regulation of carbonic anhydrase activity, inorganic carbon uptake and photosynthetic biomass yield in Chlamydomonas reinhardtii. Planta (in press)

  • Provasoli, L., McLaughlin, J.J.A., Droop, M.R. (1957) The development of artificial media for marine algae. Arch. Mikrobiol. 25, 392–428

    Google Scholar 

  • Rees, T.A.V. (1984) Sodium dependent photosynthetic oxygen evolution in a marine diatom. J. Exp. Bot. 35, 332–337

    Google Scholar 

  • Reinhold, L., Volokita, M., Zenvirth, D., Reinhold, L. (1984) Is HCO -3 transport in Anabaena a Na+ symport? Plant Physiol. 76, 1090–1092

    Google Scholar 

  • Shelp, B.J., Canvin, D.T. (1980) Utilization of exogenous inorganic carbon species in photosynthesis by Chlorella pyrenoidosa. Plant Physiol. 65, 774–779

    Google Scholar 

  • Shelp, B.J., Canvin, D.T. (1985) Inorganic carbon accumulation and photosynthesis by chlorella pyrenoidosa. Can. J. Bot. 63, 1249–1254

    Google Scholar 

  • Spalding, M.H., Ogren, W.L. (1983) Evidence for a saturable transport component in the inorganic carbon uptake of Chlamydomonas reinhardtii. FEBS Lett. 154, 335–338

    Google Scholar 

  • Spalding, M.H., Spreitzer, R.J., Ogren, W.L. (1983) Carbonic anhydrase-deficient mutant of Chlamydomonas reinhardtii requires elevated carbon dioxide concentration for photoautotrophic growth. Plant Physiol. 73, 268–272

    Google Scholar 

  • Skirrow, G. (1985) The dissolved gases — carbon dioxide. In: Chemical oceanography, pp 1–181, Riley, J.P., Skirrow, G., eds. Academic Press, London New York

    Google Scholar 

  • Wilbur, K.M., Anderson, N.G. (1948) Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, B.N., Merrett, M.J. Inorganic-carbon uptake by the marine diatom Phaeodactylum tricornutum . Planta 169, 222–227 (1986). https://doi.org/10.1007/BF00392318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392318

Key words

Navigation