Skip to main content
Log in

Concanavalin A is synthesized as a glycoprotein precursor

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Concanavalin A (Con A) is a tetrameric lectin which is synthesized in the cotyledons of developing jack-bean (Canavalia ensiformis (L.) D.C.) seeds and accumulates in the protein bodies of storage-parenchyma cells. The polypeptides of Con A have a molecular weight of 27000 and a relative molecular mass (Mr) of 30000 when analyzed by gel electrophoresis on denaturing polyacrylamide gels. In-vitro translation of RNA isolated from immature jack-bean cotyledons shows that Con A is synthesized as a polypeptide with Mr 34000. In-vivo pulse labeling of cotyledons with radioactive amino acids or glucosamine also resulted in the formation of a 34000-Mr polypeptide. In-vivo labeling with radioactive amino acids in the presence of tunicamycin yielded an additional polypeptide of 32000 Mr. Together these results indicate that Con A is cotranslationally processed by the removal of a signal sequence and the addition of an oligosaccharide side chain of corresponding size. Analysis of the structure of the oligogosaccharide side chain was accomplished through glycosidase digestion of glycopeptides isolated from [3H]glucosamine-labeled Con A. Incubation of the labeled glycopeptides with endoglycosidase H, α-mannosidase or β-N-acetylglucosaminidase, followed by gel filtration, allowed us to deduce that the oligosaccharide side chain of pro-Con A is a high-mannose oligosaccharide. Pulse-chase experiments with labeled amino acids are consistent with the interpretation that the glycosylated precursor of Con A is processed to mature Con A (Mr=30000). The 4000 decrease in Mr is interpreted to result from the removal of a small glycopeptide. The implications of the conversion of a glycoprotein pro-Con A to mature Con A are discussed in the context of the unique circular permutation of the primary structure of Con A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Con A:

concanavalin A

Glc:

glucose

GlcNAc:

N-acetylglucosamine

IgG:

immunoglobulin G

Man:

mannose

Mr :

relative molecular mass

SDS-PAGE:

sodium dodecylsulfate-polyacrylamide gel electrophoresis

References

  • Becker, J.W., Cunningham, B.A., Hemperley, J.J. (1983) Structural subclasses of lectins from leguminous plants. In: Chemical taxonomy, molecular biology, and function of plant lectins, pp. 31–45, Goldstein, I.J., Etzler, M.E. eds. Alan R. Liss, New York

    Google Scholar 

  • Bittiger, H., Schnebli, H.P. (1976) Concanavalin as a tool. John Wiley & Sons, London, UK

    Google Scholar 

  • Bollini, R., Chrispeels, M.J. (1979) The rough endoplasmic reticulum is the site of reserve-protein synthesis in developing Phaseolus vulgaris cotyledons. Planta 146, 487–501

    Google Scholar 

  • Bollini, R., Vitale, A., Chrispeels, M.J. (1983) In vivo and in vitro processing of seed reserve protein in the endoplasmic reticulum: Evidence for two glycosylation steps. J. Cell Biol. 96, 999–1007

    Google Scholar 

  • Bonner, W.M., Laskey, R.A.(1974) A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 46, 83–88

    Google Scholar 

  • Carrington, D.M., Auffret, A., Hanke, D.E. (1985) Polypeptide ligation occurs during post-translational modification of concanavalin A. Nature 313, 64–67

    Google Scholar 

  • Chrispeels, M.J. (1983) The Golgi apparatus mediates the transport of phytochemagglutinin to the protein bodies in bean cotyledons. Planta 158, 140–151

    Google Scholar 

  • Chrispeels, M.J. (1984) Biosynthesis processing and transport of storage proteins and lectins in cotyledons of developing legume seeds. Phil. Trans. R. Soc. London Ser.B 304, 309–322

    Google Scholar 

  • Chrispeels, M.J., Higgins, T.J.V., Craig, S., Spencer, D. (1982) Role of the endoplasmic reticulum in the synthesis if reserve proteins and the kinetics of their transport to protein bodies in developing pea cotyledons. J. Cell Biol. 93, 5–14

    Google Scholar 

  • Cunningham, B.A., Hemperly, J.J., Hopp, T.P., Edelman, G.M. (1979) Favin versus concanavalin A: circularly permuted amino acid sequences. Proc. Natl. Acad. Sci. USA 76, 3218–3222

    Google Scholar 

  • Cunningham, B.A., Wang, J.L., Waxdal, M.J., Edelman, G.M. (1975) The covalent and three dimensional structure of concanavalin A. II. Amino acid sequence of cyanogen bromide fragment F3. J. Biol. Chem. 250, 1503–1512

    Google Scholar 

  • Dorland, L., Van Halbeek, H., Vliegenthart, J.F.G., Lis, H., Sharon, N. (1981) Primary structure of the carbohydrate chain of soybean agglutinin. J. Biol. Chem. 256, 7708–7711

    Google Scholar 

  • Edmundson, A.B., Ely, K.R., Sly, D.A., Westholm, F.A., Powers, D.A., Liener, I.E. (1971) Isolation and characterization of concanavalin A polypeptide chains. Biochemistry 10, 3554–3559

    Google Scholar 

  • Foriers, A., De Neve, R., Kanarek, L., Strosberg, A.D. (1978) Common ancestor for concanavalin A and lentil lectin. Proc. Natl. Acad. Sci. USA 75, 1136–1139

    Google Scholar 

  • Foriers, A., Lebrun, E., Van Rapenbusch, R., De Neve, R., Strosberg, A.D. (1981) The structure of the lentil (Lens culinaris) lectin. J. Biol. Chem. 256, 5550–5560

    Google Scholar 

  • Goldstein, I.J., Hayes, C.E. (1978) The lectins: Carbohydrate-binding proteins of plants and animals. Adv. Carbohydr. Chem. Biochem. 35, 127–340

    Google Scholar 

  • Hemperley, J.J., Mostov, K.E., Cunningham, B.A. (1982) In vitro translation and processing of a precursor form of Favin, a lectin from Vicia faba. J. Biol. Chem. 257, 7903–7909

    Google Scholar 

  • Herbert, E., Uhler, M. (1982) Biosynthesis of polyprotein precursors to regulatory peptides. Cell 30, 1–2

    Google Scholar 

  • Herman, E.M., Shannon, L.M. (1984a) Immunocytochemical localization of concanavalin A in developing jack-bean cotyledons. Planta 161, 97–104

    Google Scholar 

  • Herman, E.M., Shannon, L.M. (1984b) Immunocytochemical evidence for the involvement of Golgi apparatus in the deposition of seed lectin of Bauhinia purpurea (Leguminosae). Protoplasma 121, 163–170

    Google Scholar 

  • Higgins, T.J.V. (1984) Synthesis and regulation of major proteins in seeds. Annu. Rev. Plant Physiol. 35, 191–221

    Google Scholar 

  • Higgins, T.J.V., Chandler, P.M., Zurawski, G., Button, S.C., Spencer, D. (1983a) The biosynthesis and primary structure of pea seed lectin. J. Biol. Chem. 258, 9544–9549

    Google Scholar 

  • Higgings, T.J.V., Chrispeels, M.J., Chandler, P.M., Spencer, D. (1983b) Intracellular sites of synthesis and processing of lectin in developing pea cotyledons. J. Biol. Chem. 258, 9950–9552

    Google Scholar 

  • Julius, D., Schekman, R., Thorner, J. (1984) Glycosylation and processing of prepro-α-factor through the yeast secretory pathway. Cell 36, 309–316

    Google Scholar 

  • Laemmli, U.K., Favre, M. (1973) Maturation of the head of bacteriophage T4. J. Mol. Biol. 80, 575–599

    Google Scholar 

  • Langridge, P., Pintor, J.A., Felx, G. (1982) Zein precursor mRNAs from maize endosperm. Mol. Gen. Genet. 187, 432–438

    Google Scholar 

  • Marcus, S.E., Burgess, J., Maycox, P.R., Bowles, D.J. (1984) A study of maturation events in jack-beans (Canavalia ensiformis). Biochem. J. 222, 265–268

    Google Scholar 

  • Millerd, A., Spencer, D., Dudman, W.F., Stiller, M. (1975) Growth of immature pea cotyledons in culture. Aust. J. Physiol. 2, 51–59

    Google Scholar 

  • Misaki, A., Goldstein, I.J. (1977) Glycosyl moiety of the lima bean lectin. J. Biol. Chem. 252, 6995–6999

    Google Scholar 

  • Spencer, D., Higgins, T.J.V., Button, S.C., Davey, R.A. (1980) Pulse-labeling studies on protein synthesis in developing pea seeds and evidence of a precursor form of legumin small subunit. Plant Physiol. 66, 510–515

    Google Scholar 

  • Staswick, P., Chrispeels, M.J. (1984) Expression of lectin genes during seed development in normal and phytohemagglutinin-deficient cultivars of Phaseolus vulgaris. J. Mol. Appl. Genet. 2, 525–535

    Google Scholar 

  • Strosberg, A.D., Lauwereys, M., Foriers, A. (1983) Molecular evolution of legume lectins. In: Chemical taxonomy, molecular biology, and function of plant lectins, pp. 7–20, Goldstein, I.J., Etzler, M.E., eds Alan R. Liss, New York

    Google Scholar 

  • Tarentino, A.L., Maley, F. (1974) Purification and properties of an endo-β-N-acetylglucosaminidase from Streptomyces griseus. J. Biol. Chem. 249, 811–817

    Google Scholar 

  • Ternynck, T., Avrameas, S. (1972) Polyacrylamide-protein immunoadsorbents prepared with glutaraldehyde. FEBS Lett. 23, 24–28

    Google Scholar 

  • Vitale, A., Ceriotti, A., Bollini, R., Chrispeels, M.J. (1984a) Biosynthesis and processing of phytohemagglutin in developing bean cotyledons. Eur. J. Biochem. 141, 97–104

    Google Scholar 

  • Vitale, A., Chrispeels, M.J. (1984) Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: Attachment in the Golgi apparatus and removal in protein bodies. J. Cell Biol. 99, 133–140

    Google Scholar 

  • Vitale, A., Warner, T.G., Chrispeels, M.J. (1984b) Phaseolus vulgaris phytohemagglutinin contains high mannose and modified oligosaccharide chains. Planta 160, 256–263

    Google Scholar 

  • Vodkin, L.O. (1981) Isolation and characterization of messenger RNAs for seed lectin and Kunitz trypsin inhibitor in soybeans. Plant Physiol. 68, 766–771

    Google Scholar 

  • Wang, J.L., Cunningham, B.A., Edelman, G.M. (1971) Unusual fragments in the subunit structure of concanavalin A. Proc. Natl. Acad. Sci. USA 68, 1130–1134

    Google Scholar 

  • Wang, J.L., Cunningham, B.A., Waxdal, M.J., Edelman, G. (1975) The covalent and three dimensional structure of concanavalin A. I. Amino acid sequence of cyanogen bromide fragments F1 and F2. J. Biol. Chem. 250, 1490–1502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herman, E.M., Shannon, L.M. & Chrispeels, M.J. Concanavalin A is synthesized as a glycoprotein precursor. Planta 165, 23–29 (1985). https://doi.org/10.1007/BF00392207

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392207

Key words

Navigation