Skip to main content
Log in

A galactoside-specific Dalbergieae legume lectin from seeds of Vataireopsis araroba (Aguiar) Ducke

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The Dalbergieae lectin group encompasses several lectins with significant differences in their carbohydrate specificities and biological properties. The current work reports on the purification and characterization of a GalNAc/Gal-specific lectin from Vataireopsis araroba (Aguiar) Ducke, designated as VaL. The lectin was purified from the seeds in a single step using guar gum affinity chromatography. The lectin migrated as a single band of about 35 kDa on SDS-PAGE and, in native conditions, occurs as a homodimer. The purified lectin is stable at temperatures up to 60 °C and in a pH range from 7 to 8 and requires divalent cations for its activity. Sugar-inhibition assays demonstrate the lectin specificity towards N-acetyl-D-galactosamine, D-galactose and related sugars. Furthermore, glycan array analyses show that VaL interacts preferentially with glycans containing terminal GalNAc/Galβ1-4GlcNAc. Biological activity assays were performed using three insect cell lines: CF1 midgut cells from the spruce budworm Choristoneura fumiferana, S2 embryo cells from the fruit fly Drosophila melanogaster, and GutAW midgut cells from the corn earworm Helicoverpa zea. In vitro assays indicated a biostatic effect for VaL on CF1 cells, but not on S2 and GutAW cells. The lectin presented a biostatic effect by reducing the cell growth and inducing cell agglutination, suggesting an interaction with glycans on the cell surface. VaL has been characterized as a galactoside-specific lectin of the Dalbergieae tribe, with sequence similarity to lectins from Vatairea and Arachis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Ambrosi, M., Cameron, N.R., Davis, B.G.: Lectins: tools for the molecular understanding of the glycocode. Org. Biomol. Chem. 3, 1593–1608 (2005). https://doi.org/10.1039/b414350g

    Article  CAS  PubMed  Google Scholar 

  2. Peumans, W.J., Van Damme, E.J.M.: Lectins as Plant Defense Proteins. Plant. Physiol. 109, 347–352 (1995). https://doi.org/10.1104/pp.109.2.347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Tsaneva, M., Van Damme, E.J.M.: 130 years of Plant Lectin Research. Glycoconj. J. 37, 533–551 (2020). https://doi.org/10.1007/s10719-020-09942-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Komath, S.S., Kavitha, M., Swamy, M.J.: Beyond carbohydrate binding: new directions in plant lectin research. Org. Biomol. Chem. 4, 973–988 (2006). https://doi.org/10.1039/b515446d

    Article  CAS  PubMed  Google Scholar 

  5. De Coninck, T., Van Damme, E.J.M.: The multiple roles of plant lectins. Plant. Sci. 313, 111096 (2021). https://doi.org/10.1016/j.plantsci.2021.111096

    Article  CAS  PubMed  Google Scholar 

  6. Araripe, D.A., Pinto-Junior, V.R., Neco, A.H.B., Santiago, M.Q., Osterne, V.J.S., Pires, A.F., Lossio, C.F., Martins, M.G.Q., Correia, J.L.A., Benevides, R.G., Leal, R.B., Assreuy, A.M.S., Nascimento, K.S., Cavada, B.S.: Partial characterization and immobilization in CNBr-activated Sepharose of a native lectin from Platypodium elegans seeds (PELa) and comparative study of edematogenic effect with the recombinant form. Int. J. Biol. Macromol. 102, 323–330 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.193

    Article  CAS  PubMed  Google Scholar 

  7. Alencar, N.M.N., Assreuy, A.M.S., Alencar, V.B.M., Melo, S.C., Ramos, M.V., Cavada, B.S., Cunha, F.Q., Ribeiro, R.A.: The galactose-binding lectin from Vatairea macrocarpa seeds induces in vivo neutrophil migration by indirect mechanism. Int. J. Biochem. Cell. Biol. 35, 1674–1681 (2003). https://doi.org/10.1016/s1357-2725(03)00138-9

    Article  CAS  PubMed  Google Scholar 

  8. Marques, G.F.O., Pires, A.F., Osterne, V.J.S., Pinto-Junior, V.R., Silva, I.B., Martins, M.G.Q., Oliveira, M.V., Gomes, A.M., de Souza, L.A.G., Pavão, M.S.G., Cavada, B.S., Assreuy, A.M.S., Nascimento, K.S.: Vatairea guianensis lectin stimulates changes in gene expression and release of TNF-α from rat peritoneal macrophages via glycoconjugate binding. J. Mol. Recognit. 34, 1–10 (2021). https://doi.org/10.1002/jmr.2922

    Article  CAS  Google Scholar 

  9. De Freitas Pires, A., Bezerra, M.M., Amorim, R.M.F., do Nascimento, F.L.F., Marinho, M.M., Moura, R.M., Silva, M.T.L., Correia, J.L.A., Cavada, B.S., Assreuy, A.M.S., Nascimento, K.S.: Lectin purified from Lonchocarpus campestris seeds inhibits inflammatory nociception. Int. J. Biol. Macromol. 125, 53–60 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.233

    Article  CAS  PubMed  Google Scholar 

  10. Avichezer, D., Arnon, R.: Differential reactivities of the Arachis hypogaea (peanut) and Vicia villosa B4 lectins with human ovarian carcinoma cells, grown either in vitro or in vivo xenograft model. FEBS Lett. 395, 103–108 (1996). https://doi.org/10.1016/0014-5793(96)01010-1

    Article  CAS  PubMed  Google Scholar 

  11. Li, X.-T., He, M.-L., Zhou, Z.-Y., Jiang, Y., Cheng, L.: The antitumor activity of PNA modified vinblastine cationic liposomes on Lewis lung tumor cells: In vitro and in vivo evaluation. Int. J. Pharm. 487, 223–233 (2015). https://doi.org/10.1016/j.ijpharm.2015.04.035

    Article  CAS  PubMed  Google Scholar 

  12. Nascimento, K.S., Silva, M.T.L., Oliveira, M.V., Lossio, C.F., Pinto-Junior, V.R., Osterne, V.J.S., Cavada, B.S.: Dalbergieae lectins: A review of lectins from species of a primitive Papilionoideae (leguminous) tribe. Int. J. Biol. Macromol. 144, 509–526 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.117

    Article  CAS  PubMed  Google Scholar 

  13. Reyes-Montaño, E.A., Vega-Castro, N.A.: Plant Lectins with Insecticidal and Insectistatic Activities. Insecticides - Agriculture and Toxicology, pp. 17–41 (2018). https://doi.org/10.5772/intechopen.74962

  14. Walski, T., De Schutter, K., Cappelle, K., Van Damme, E.J.M., Smagghe, G.: Distribution of Glycan Motifs at the Surface of Midgut Cells in the Cotton Leafworm Demonstrated by Lectin Binding. Front. Physiol. 8, 1020 (2017). https://doi.org/10.3389/fphys.2017.01020

    Article  PubMed Central  PubMed  Google Scholar 

  15. De Lima, H.C.: Revisão taxonômica do gênero Vataireopsis Ducke (Leg. Fab.). Ducke (Leg. Fab.). Rodriguésia. 32, 21–40 (1980). https://doi.org/10.1590/2175-78601980325404

  16. Valle, M.L.A., de Sousa Aleluia Santos, B., Jardim, J.G.: A xiloteca do Centro de Pesquisas do Cacau e as madeiras da Mata Atlântica. Mata Atlântica. Paubrasilia. 2(2), 7–13 (2019). https://doi.org/10.33447/paubrasilia.v2i2.28

    Article  Google Scholar 

  17. Christoforo, A.L., de Moura Aquino, V.B., Govone, J.S., Dias, A.M.P., Panzera, T.H., Lahr, F.A.R.: Alternative model to determine the characteristic strength value of wood in the compression parallel to the grain. Maderas. Ciencia y tecnología. 22(3), 281–290 (2020). https://doi.org/10.4067/s0718-221x2020005000303

    Article  Google Scholar 

  18. Kerkhof, P.C.M.V.D., Van De Kerkhof, P.C.M., Van Der Valk, P.G.M., Swinkels, O.Q.J., Kucharekova, M., De Rie, M.A., De Vries, H.J.C., Damstra, R., De Waard-van der Oranje, A.P., Van Neer, P., Lijnen, R.L.P., Kunkeler, A.C.M., Van Hees, C., Haertlein, N.G.J., Hol, C.W.: A comparison of twice-daily calcipotriol ointment with once-daily short-contact dithranol cream therapy: a randomized controlled trial of supervised treatment of psoriasis vulgaris in a day-care setting. Br. J. Dermatology. 155, 800–807 (2006). https://doi.org/10.1111/j.1365-2133.2006.07393.x

    Article  CAS  Google Scholar 

  19. Hoffmann, J., Gendrisch, F., Schempp, C.M., Wölfle, U.: New Herbal Biomedicines for the Topical Treatment of Dermatological Disorders. Biomedicines. 8 (2020). https://doi.org/10.3390/biomedicines8020027

  20. Cavada, B.S., Bari, A.U., Pinto-Junior, V.R., Lossio, C.F., Silva, M.T.L., Souza, L.A.G., Oliveira, M.V., Souza-Filho, C.H.D., Correia, S.E.G., Lima, L.D., Osterne, V.J.S., Nascimento, K.S.: Purification and partial characterization of a new lectin from Parkia panurensis Benth. ex H.C. Hopkins seeds (Leguminosae family; Mimosoideae subfamily) and evaluation of its biological effects. Int. J. Biol. Macromol. 145, 845–855 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.102

  21. Cavada, B.S., Santos, C.F., Grangeiro, T.B., Nunes, E.P., Sales, P.V., Ramos, R.L., De Sousa, F.A., Crisostomo, C.V., Calvete, J.J.: Purification and characterization of a lectin from seeds of Vatairea macrocarpa Duke. Phytochemistry. 49, 675–680 (1998). https://doi.org/10.1016/s0031-9422(98)00144-7

    Article  CAS  PubMed  Google Scholar 

  22. Silva, H.C., Nagano, C.S., Souza, L.A.G., Nascimento, K.S., Isídro, R., Delatorre, P., Rocha, B.A.M., Sampaio, A.H., Assreuy, A.M.S., Pires, A.F., Damasceno, L.E.A., Marques-Domingos, G.F.O., Cavada, B.S.: Purification and primary structure determination of a galactose-specific lectin from Vatairea guianensis Aublet seeds that exhibits vasorelaxant effect. Process. Biochem. 47, 2347–2355 (2012). https://doi.org/10.1016/j.procbio.2012.09.014

    Article  CAS  Google Scholar 

  23. Sultan, N.A.M., Kenoth, R., Swamy, M.J.: Purification, physicochemical characterization, saccharide specificity, and chemical modification of a Gal/GalNAc specific lectin from the seeds of Trichosanthes dioica. Arch. Biochem. Biophys. 432, 212–221 (2004). https://doi.org/10.1016/j.abb.2004.09.016

    Article  CAS  PubMed  Google Scholar 

  24. Datta, D., Pohlentz, G., Schulte, M., Kaiser, M., Goycoolea, F.M., Müthing, J., Mormann, M., Swamy, M.J.: Physico-chemical characteristics and primary structure of an affinity-purified α-D-galactose-specific, jacalin-related lectin from the latex of mulberry (Morus indica). Arch. Biochem. Biophys. 609, 59–68 (2016). https://doi.org/10.1016/j.abb.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  25. Appukuttan, P.S., Surolia, A., Bachawat, B.K.: Isolation of two galactose-binding proteins from Ricinus communis by affinity chromatography. Indian J. Biochem. Biophys. 14, 382–384 (1977)

    CAS  PubMed  Google Scholar 

  26. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685 (1970). https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  27. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  28. Zacharius, R.M., Zell, T.E., Morrison, J.H., Woodlock, J.J.: Glycoprotein staining following electrophoresis on acrylamide gels. Anal. Biochem. 30, 148–152 (1969). https://doi.org/10.1016/0003-2697(69)90383-2

    Article  CAS  PubMed  Google Scholar 

  29. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 28(3), 350–356 (1956). https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  30. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., Mann, M.: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006). https://doi.org/10.1038/nprot.2006.468

    Article  CAS  PubMed  Google Scholar 

  31. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). https://doi.org/10.1016/s0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  32. Robert, X., Gouet, P.: Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research. 42, 320–324 (2014). https://doi.org/10.1093/nar/gku316

    Article  CAS  Google Scholar 

  33. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., Higgins, D.G.: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011). https://doi.org/10.1038/msb.2011.75

    Article  PubMed Central  PubMed  Google Scholar 

  34. Brzezicka, K., Echeverria, B., Serna, S., van Diepen, A., Hokke, C.H., Reichardt, N.-C.: Synthesis and microarray-assisted binding studies of core xylose and fucose containing N-glycans. ACS Chem. Biol. 10, 1290–1302 (2015). https://doi.org/10.1021/cb501023u

    Article  CAS  PubMed  Google Scholar 

  35. Smagghe, G.J., Elsen, K., Loeb, M.J., Gelman, D.B., Blackburn, M.: Effects of a fat body extract on larval midgut cells and growth of Lepidoptera. In Vitro Cell. Dev. Biol. Anim. 39, 8–12 (2003). https://doi.org/10.1290/1543-706X(2003)0390008:EOAFBE2.0.CO;2

    Article  PubMed  Google Scholar 

  36. Smagghe, G., Goodman, C.L., Stanley, D.: Insect cell culture and applications to research and pest management. In Vitro Cellular & Developmental Biology - Animal. 45, 93–105 (2009). https://doi.org/10.1007/s11626-009-9181-x

  37. Fu, C., Zhao, H., Wang, Y., Cai, H., Xiao, Y., Zeng, Y., Chen, H.: Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. Hladnikia. 88, 275–286 (2016). https://doi.org/10.1111/tan.12900

    Article  CAS  Google Scholar 

  38. Law, I.J., Haylett, T., Strijdom, B.W.: Differences in properties of peanut seed lectin and purified galactose- and mannose-binding lectins from nodules of peanut. Planta. 176, 19–27 (1988). https://doi.org/10.1007/bf00392475

    Article  CAS  PubMed  Google Scholar 

  39. Lotan, R., Skutelsky, E., Danon, D., Sharon, N.: The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem. 250, 8518–8523 (1975). https://doi.org/10.1016/s0021-9258(19)40790-4

    Article  CAS  PubMed  Google Scholar 

  40. Singh, R., Das, H.R.: Purification of lectins from the stems of peanut plants. Glycoconj. J. 11, 282–285 (1994). https://doi.org/10.1007/BF00731199

    Article  CAS  PubMed  Google Scholar 

  41. Joubert, F.J., Sharon, N., Merrifield, E.H.: Purification and properties of a lectin from Lonchocarpus capassa (apple-leaf) seed. Phytochemistry. 25, 323–327 (1986). https://doi.org/10.1016/S0031-9422(00)85474-6

    Article  CAS  Google Scholar 

  42. Alves Filho, J.G., do Nascimento, A.S.F., Gondim, A.C.S., Pereira, R.H., da Cunha, R.M.S., Nagano, C.S., Teixeira, E.H., Nascimento, K.S., Cavada, B.S.: Isoform characterisation, heterologous expression and functional analysis of two lectins from Vatairea macrocarpa. Protein Pept. Lett. 20, 1204–1210 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. Lauwereys, M., Foriers, A., Sharor, N., Strosberg, A.D.: Sequence studies of peanut agglutinin. FEBS Lett. 181, 241–244 (1985). https://doi.org/10.1016/0014-5793(85)80267-2

    Article  CAS  Google Scholar 

  44. Young, N.M., Johnston, R.A., Watson, D.C.: The amino acid sequence of peanut agglutinin. Eur. J. Biochem. 196, 631–637 (1991). https://doi.org/10.1111/j.1432-1033.1991.tb15859.x

    Article  CAS  PubMed  Google Scholar 

  45. Calvete, J.J., Santos, C.F., Mann, K., Grangeiro, T.B., Nimtz, M., Urbanke, C., Sousa-Cavada, B.: Amino acid sequence, glycan structure, and proteolytic processing of the lectin of Vatairea macrocarpa seeds. FEBS Lett. 425, 286–292 (1998). https://doi.org/10.1016/s0014-5793(98)00243-9

    Article  CAS  PubMed  Google Scholar 

  46. Van Damme, E.J., Barre, A., Rougé, P., Van Leuven, F., Peumans, W.J.: The seed lectins of black locust (Robinia pseudoacacia) are encoded by two genes which differ from the bark lectin genes. Plant. Mol. Biol. 29, 1197–1210 (1995). https://doi.org/10.1007/BF00020462

    Article  PubMed  Google Scholar 

  47. Sousa, B.L., Filho, J.C.S., Kumar, P., Pereira, R.I., Łyskowski, A., Rocha, B.A.M., Delatorre, P., Bezerra, G.A., Nagano, C.S., Gruber, K., Cavada, B.S.: High-resolution structure of a new Tn antigen-binding lectin from Vatairea macrocarpa and a comparative analysis of Tn-binding legume lectins. Int. J. Biochem. Cell Biol. 59, 103–110 (2015). https://doi.org/10.1016/j.biocel.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  48. Calvete, J.J., Santos, C.F., Mann, K., Grangeiro, T.B., Nimtz, M., Sousa-Cavada, B.: Primary structure and posttranslational processing of Vatairea macrocarpa seed lectin. J. Protein Chem. 17, 545–547 (1998). https://doi.org/10.1016/S0014-5793(98)00243-9

    Article  CAS  PubMed  Google Scholar 

  49. Serna, S., Etxebarria, J., Ruiz, N., Martin-Lomas, M., Reichardt, N.-C.: Construction of N-glycan microarrays by using modular synthesis and on-chip nanoscale enzymatic glycosylation. Chemistry. 16, 13163–13175 (2010). https://doi.org/10.1002/chem.201001295

    Article  CAS  PubMed  Google Scholar 

  50. Echeverria, B., Serna, S., Achilli, S., Vivès, C., Pham, J., Thépaut, M., Hokke, C.H., Fieschi, F., Reichardt, N.-C.: Chemoenzymatic Synthesis of N-glycan Positional Isomers and Evidence for Branch Selective Binding by Monoclonal Antibodies and Human C-type Lectin Receptors. ACS Chem. Biol. 13, 2269–2279 (2018). https://doi.org/10.1021/acschembio.8b00431

    Article  CAS  PubMed  Google Scholar 

  51. Hamshou, M., Smagghe, G., Shahidi-Noghabi, S., De Geyter, E., Lannoo, N., Van Damme, E.J.M.: Insecticidal properties of Sclerotinia sclerotiorum agglutinin and its interaction with insect tissues and cells. Insect Biochem. Mol. Biol. 40, 883–890 (2010). https://doi.org/10.1016/j.ibmb.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  52. Hamshou, M., Van Damme, E.J.M., Caccia, S., Cappelle, K., Vandenborre, G., Ghesquière, B., Gevaert, K., Smagghe, G.: High entomotoxicity and mechanism of the fungal GalNAc/Gal-specific Rhizoctonia solani lectin in pest insects. J. Insect Physiol. 59, 295–305 (2013). https://doi.org/10.1016/j.jinsphys.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  53. Chen, P., De Schutter, K., Serna, S., Chen, S., Yang, Q., Reichardt, N.-C., Van Damme, E.J.M., Smagghe, G.: Glycosylation reduces the glycan-independent immunomodulatory effect of recombinant Orysata lectin in Drosophila S2 cells. Sci. Rep. 11, 17958 (2021). https://doi.org/10.1038/s41598-021-97161-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Law, I.J., Kfir, R.: Effect of mannose-binding lectin from peanut and pea on the stem borer Chilo partellus. Entomol. Exp. Appl. 82, 261–265 (1997). https://doi.org/10.1046/j.1570-7458.1997.00139.x

    Article  CAS  Google Scholar 

  55. Chen, P., De Schutter, K., Pauwels, J., Gevaert, K., Van Damme, E.J.M., Smagghe, G.: Binding of Orysata lectin induces an immune response in insect cells. Insect Sci. 29, 717–729 (2021). https://doi.org/10.1111/1744-7917.12968

    Article  CAS  PubMed  Google Scholar 

  56. Macedo, M.L.R., Oliveira, C.F.R., Oliveira, C.T.: Insecticidal activity of plant lectins and potential application in crop protection. Molecules. 20, 2014–2033 (2015). https://doi.org/10.3390/molecules20022014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP). B.S.C and K.S.N are senior investigators of CNPq. N. R. and S.S. are grateful to Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación (MCIN/AEI: https://doi.org/10.13039/501100011033) for funding received under grant number PID2020-117552RB-I00 and the Maria de Maeztu Units of Excellence Programme (Grant MDM-2017-0720). VJSO is grateful to FWO-Vlaanderen for the post-doctoral fellowship (12T4622N).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Els J.M. Van Damme or Kyria Santiago Nascimento.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Vinicius J.S. Osterne and Messias V. Oliveira contributed equally to the current work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osterne, V.J., Oliveira, M.V., De Schutter, K. et al. A galactoside-specific Dalbergieae legume lectin from seeds of Vataireopsis araroba (Aguiar) Ducke. Glycoconj J 40, 85–95 (2023). https://doi.org/10.1007/s10719-022-10082-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10082-8

Keywords

Navigation