Skip to main content
Log in

Zur Regulation des aeroben Intermediärstoffwechsels in ausgehungerten Hefezellen bei Zugabe von Glucose und NH4 +-Ionen

Control of aerobic metabolism in starved yeast cells supplied with glucose and ammonia

  • Published:
Planta Aims and scope Submit manuscript

Summary

When glucose is added to starved yeast cells under strictly aerobic conditions ([O2]>90% air saturation) the concentrations of G-6-P, F-6-P, FDP, pyruvate, malate and α-ketoglutarate rise, whereas those of PEP and PGA fall to a low level. This indicates that PK is activated and either GAPDH or PGK becomes rate limiting. Exogenous citrate is metabolized only after feeding. The level of pyruvate, α-ketoglutarate and malate accumulated is lower if ammonia was added to the medium, which indicates the onset of amino acid synthesis. The concentrations of adenosine and uridine nucleotides are diminished if ammonia is present in addition to glucose. Actinomycin prevents the decrease in adenosine nucleotide concentrations.

The accumulation of FDP and pyruvate after glucose addition is more pronounced in the presence of ammonia. This, together with changing rates of ethanol accumulation, indicates that PDC is a limiting factor during starvation and becomes activated very slowly, especially in the presence of ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADH:

Alkoholdehydrogenase (1.1.1.1)

Ala:

L-(+)-Alanin

AMP, ADP, ATP:

Adenosin-mono-, di-, triphosphat

Asp:

L-(+)-Asparaginsäure

Asp-NH2 :

L-(+)-Asparagin

DAP:

Dihydroxyacetonphosphat

EtOH:

Äthanol

F-6-P:

β-D-Fructose-6-Phosphat

FDP:

D-Fructose-1,6-diphosphat

GAP:

D-Glycerinaldehyd-3-phosphat

GAPDH:

Glycerinaldehydphosphat-dehydrogenase (1.2.1.12)

G-6-P:

D-Glucose-6-phosphat

Glu:

L-(+) Glutaminsäure

Glu-NH2 :

Glutamin

α-Kg:

α-Ketoglutarsäure

MDH:

Malatdehydrogenase (1.1.1.37)

NADH:

Diphospho-pyridin-nucleotid, reduziert

PDC:

Pyruvatdecarboxylase (4.1.1.1)

PEP:

Phosphoenolpyruvat

PFK:

Phosphofructokinase (2.7.1.11)

PGK:

Phosphoglyceratkinase (2.7.2.3)

3-PGS, PGA:

D-3-Phosphoglycerinsäure

1,3-PGS:

D-1,3-Diphosphoglycerinsäure

PK:

Pyruvatkinase (2.7.1.40)

Pyr:

Pyruvat

Ser:

L-Serin

Thr:

L-(-)-Threonin

TRA:

Triäthanolamin

UMP:

Uridin-5′-monophosphat

UDP:

Uridin-5′-diphosphat

UTP:

Uridin-5′-triphosphat

Literatur

  • Becker, J.-U., Betz, A.: Membrane transport as controlling pacemaker of glycolysis in Saccharomyces carlsbergensis. Biochim. biophys. Acta (Amst.) 274, 584–597 (1972)

    Google Scholar 

  • Bergmeyer, H. U.: Methoden der enzymatischen Analyse, 2. Aufl. Weinheim: Verlag Chemie, 1970

    Google Scholar 

  • Bernt, E., Bergmeyer, H. U.: Harnstoff. In: Bergmeyer, H. U. (Hrsg.), Methoden der enzymatischen Analyse, Bd. II, S. 1738–1745. Weinheim: Verlag Chemie, 1970

    Google Scholar 

  • Betz, A.: Die aerobe Gärung in aktiven Meristemen höherer Pflanzen. In: Handbuch der Pflanzenphysiologie (W. Ruhland, Hrsg.) Bd. XII/2, S. 88–113. Berlin-Göttingen-Heidelberg: Springer 1960

    Google Scholar 

  • Betz, A.: Regulation der Enzymaktivität. Ber. dtsch. bot. Ges. 85, 585–600 (1972)

    Google Scholar 

  • Betz, A., Chance, B.: Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control. Arch. Biochem. Biophys. 109, 585–594 (1965)

    Google Scholar 

  • Betz, A., Hinrichs, R.: Incorporation of glucose into an insoluble polyglucoside during oscillatory controlled glycolysis in yeast cells. Europ. J. Biochem. 5, 154–157 (1968)

    Google Scholar 

  • Betz, A., Moore, C.: Fluctuating metabolite levels in yeast cells and extracts, and the control of phosphofructokinase activity in vitro. Arch. Biochem. Biophys. 120, 268–273 (1967)

    Google Scholar 

  • Betz, A., Sel'kov, E.: Control of phosphofructokinase (PFK) activity in conditions simulating those of glycolysing yeast extract. FEBS Letters 3, 5–9 (1969)

    Google Scholar 

  • Estabrook, R. W., Maitra, P. K.: A fluorimetric method for the quantitative microanalysis of adenine and pyridine nucleotides. Analyt. Biochem. 3, 369–382 (1962)

    Google Scholar 

  • Ghosh, A., Charalampous, F., Sison, Y., Borer, R.: Metabolic functions of myoinositol. J. biol. Chem. 235, 2522–2528 (1960)

    Google Scholar 

  • Haeckel, R., Hess, B., Lauterborn, W., Wüster, K. H.: Purification and allosteric properties of yeast pyruvate kinase. Hoppe-Seylers Z. physiol. Chem. 349, 699–714 (1968)

    Google Scholar 

  • Hess, B., Boiteux, A., Krüger, J.: Cooperation of glycolytic enzymes. Advanc. Enz. Regul. 7, 149–167 (1969)

    Google Scholar 

  • Holzer, H., Freytag-Hilf, R.: Zusammenwirken der Gärungsenzyme beim anaeroben und aeroben glucose-Umsatz in Hefezellen Hoppe-Seylers Z. physiol. Chem. 316, 7–30 (1959)

    Google Scholar 

  • Holzer, H., Holldorf, A.: Enzymatische Regulation von Atmung und Gärung. In: Handbuch der Pflanzenphysiologie (W. Ruhland, Hrsg.) Bd. XII/1, S. 1092–1121. Berlin-Göttingen-Heidelberg: Springer 1960

    Google Scholar 

  • Holzer, H., Witt, I.: Die ersten Stoffwechselveränderungen nach Zusatz von NH4 +-Ionen zu Glucose oxydierenden Hefezellen. Biochem. Z. 330, 545–554 (1968)

    Google Scholar 

  • Hommes, F. A.: Mechanism of the Crabtree effect in yeast grown with different glucose concentrations Arch. Biochem. Biophys. 113, 324–330 (1966)

    Google Scholar 

  • Klitzing, L. von: Stoffwechselregulation aerober Zellsuspensionen von Saccharomyces carlsbergensis nach Glucosezugabe. Protoplasma (Wien) 72, 109–117 (1971)

    Google Scholar 

  • Kopperschläger, G.: Über die Begrenzung des aeroben und anaeroben Glucoseverbrauches in Hefezellen durch Enzyme der Gärungskette. Wiss. Z. Karl-Marx-Univ. Leipzig 17, 623–629 (1968)

    Google Scholar 

  • Kopperschläger, G., Baehr, M. L. von, Hofmann, E.: Zur Regulation des mehrphasigen Verlaufes des aeroben und anaeroben Glukoseverbrauches in Hefezellen. Acta biol. med. germ. 19, 691–704 (1967)

    Google Scholar 

  • Maitra, P. K., Estabrook, R. W.: A fluorometric method for the enzymic determination of glycolytic intermediates. Analyt. Biochem. 7, 472–484 (1964)

    Google Scholar 

  • Monod, J.: La technique de culture continué. Théorie et applications. Ann. Inst. Pasteur 79, 390–410 (1950)

    Google Scholar 

  • Rothman, L. B., Cabib, E.: Regulation of glycogen synthesis in the intact yeast cell. Biochemistry 8, 3332–3341 (1969)

    Google Scholar 

  • Witt, I., Holzer, H.: Hauptweg des NH4 +-Einbaues in Glucose oxydierender Bäckerhefe. Biochem. Z. 339, 255–265 (1964)

    Google Scholar 

  • Witt, I., Kronau, R., Holzer, H.: Repression von Alkoholdehydrogenase, Malatdehydrogenase, Isocitratlyase und Malatsynthase in Hefe durch Glucose. Biochim. biophys. Acta (Amst.) 118, 522–537 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Unter Benutzung der Dissertation von S. M. Mizani „Änderungen der Metabolitkonzentrationen in ausgehungerten Hefezellen (Saccharomyces carlsbergensis) bei Zugabe von Glucose und NH4 +-Ionen unter streng aeroben Bedingungen”, Bonn 1972.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizani, S.M., Betz, A. & Eilers-König, C. Zur Regulation des aeroben Intermediärstoffwechsels in ausgehungerten Hefezellen bei Zugabe von Glucose und NH4 +-Ionen. Planta 117, 11–27 (1974). https://doi.org/10.1007/BF00388675

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00388675

Navigation