Skip to main content
Log in

Subcellular distribution of 35S-sulfur in spinach leaves after application of 35SO 2-4 , 35SO 2-3 , and 35SO2

  • Published:
Planta Aims and scope Submit manuscript

Abstract

35SO2, 35SO 2-3 , and 35SO 2-4 , respectively, were applied to leaves of Spinacia oleracea L. for 60 min in the light. Thereafter, the specific activity was determined in the organelles separated by means of sucrose density gradient centrifugation. In mitochondria and peroxisomes, the specific activity was equally distributed in their protein moieties. After application of 35SO2 or 35SO 2-3 , the chloroplast lamellae are characterized by elevated specific activity, which is not found after application of 35SO 2-4 . Chloroplast stroma shows a low specific incorporation rate after application of either compound, which may be due to the low turnover rate of Fraction I protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi, H.: Katalase. In: Methoden der enzymatischen Analyse. Bergmeyer, H.U., ed., pp. 636–647. Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949)

    Google Scholar 

  • Baldry, C.W., Cockburn, W., Walker, D.A.: Inhibition, by sulfate of the oxygen evolution associated with photosynthetic assimilation. Biochim. Biophys. Acta 153, 476–483 (1968)

    PubMed  Google Scholar 

  • Beevers, H., Theimer, R.R., Feierabend, I.: Microbodies (Glyoxysomen, Peroxysomen). In: Biochemische Cytologie der Pflanzenzelle. Jacobi, G., ed. Stuttgart: G. Thieme 1974

    Google Scholar 

  • Benson, A.A.: The plant sulfolipid. Adv. Lipid Res. 1, 387–394 (1963)

    Google Scholar 

  • Biddulph, S.F.: Visual indications of S35 and P32 translocation in the phloem. Amer. J. Bot. 43, 143–148 (1956)

    Google Scholar 

  • Boukhris, M.: Localisation histo-autoradiographique du 35SO4 dans les tissus de l'Erodium glaucophyllum. C.R. Acad. Sci. 275, 2651–2654 (1972)

    Google Scholar 

  • Brunold, Ch., Schiff, J.A.: Studies of sulfate utilization by algae. 15. Enzymes of assimilatory sulfate reduction in Euglena and their cellular organization. Plant Physiol. 57, 430–436 (1976)

    Google Scholar 

  • Crompton, M., Palmieri, F., Capano, M., Quagliariello, E.: The transport of sulphate and sulphite in rat liver mitochondria. Biochem. J. 142, 127–137 (1974)

    PubMed  Google Scholar 

  • Davies, W.H., Mercer, E.I., Goodwin, T.W.: Some observations on the biosynthesis of the plant sulfolipid by Euglena gracilis. Biochem. J. 98, 369–373 (1966)

    PubMed  Google Scholar 

  • Douce, R., Holtz, R.B., Benson, A.A.: Isolation and properties of the envelope of spinach chloroplasts. J. Biol. Chem. 248, 7215–7222 (1973)

    PubMed  Google Scholar 

  • Huffaker, R.C., Peterson, L.W.: Protein turnover in plants and possible means of its regulation. Ann. Rev. Plant Physiol. 25, 363–392 (1974)

    Google Scholar 

  • Jacobi, G.: Chloroplasten. In: Biochemische Cytologie der Zelle, pp. 72–108, Jacobi, G., ed. Stuttgart: G. Thieme 1974

    Google Scholar 

  • Katona, E.: Incorporation of inorganic sulfate in rat-liver Golgi. Europ. J. Biochem. 63, 583–590 (1976)

    PubMed  Google Scholar 

  • Kawashima, N., Wildner, S.G.: Fraction I protein. Ann. Rev. Plant Physiol. 21, 325–358 (1971)

    Article  Google Scholar 

  • Läuchli, A.: Translocation of inorganic solutes. Ann. Rev. Plant. Physiol. 23, 197–218 (1972)

    Google Scholar 

  • Layne, E.: Spectrophotometric and turbidimetric methods for measuring proteins. In: Methods in Enzymology, Vol. 3, pp. 447–454, Colowick, S.P., Kaplan, N.Y., eds. New York: Academic Press 1957

    Google Scholar 

  • Leonard, R.T., Van der Woude, W.H.: Isolation of plasma membranes from corn roots by sucrose densitiy gradient centrifugation. An anomalous effect of Ficoll. Plant Physiol. 57, 105–114 (1976)

    Google Scholar 

  • Libera, W., Ziegler, H., Ziegler, I.: Förderung der Hill-Reaktion und der CO2-Fixierung in isolierten Spinatchloroplasten durch niedere Sulfitkonzentrationen. Planta 109, 269–279 (1974)

    Google Scholar 

  • Pineau, B., Douce, R.: Analysis of the protein composition of spinach chloroplast envelopes. In: Proc. III Internat. Congr. Photosynth. pp. 1667–1673, Avron, M., ed. Amsterdam: Elsevier 1975

    Google Scholar 

  • Popov, N., Schmitt, M., Schulzech, S., Matthies, H.: Eine störungsfreie Mikromethode zur Bestimmung des Proteingehaltes in Gewebehomogenaten. Acta Biol. Med. Germ. 34, 1441–1446 (1975)

    PubMed  Google Scholar 

  • Rauschenbach, P., Simon, H.: Sample preparation with an automated oxygen flask combustion apparatus for liquid scintillation counting of 3H-, 14C-, and/or 35S-labelled material. In: Liquid Scintillation Counting, Vol. 3, pp. 158–163. Crook, M.A. Johnson, P., eds. London-New York: Hyden 1974

    Google Scholar 

  • Rocha, V., Ting, I.P.: Preparation of cellular plant organelles from spinach leaves. Arch. Biochem. Biophys. 140, 398–407 (1970)

    PubMed  Google Scholar 

  • Schiff, J., Hodson, R.C.: The metabolism of sulfate. Ann. Rev. Plant Physiol. 24, 381–414 (1973)

    Google Scholar 

  • Schmidt, A., Trebst, A.: The mechanism of photosynthetic sulfate reduction by isolated chloroplasts. Biochim. Biophys. Acta 180, 529–535 (1969)

    PubMed  Google Scholar 

  • Schwenn, J.D., Depka, B., Hennies, H.H.: Assimilatory sulfate reduction in chloroplasts: Evidence for the participation of both stromal and membrane-bound enzymes. Plant Cell Physiol. (Tokyo) 17, 165–171 (1976)

    Google Scholar 

  • Sinensky, M., Strobel, G.: Chemical composition of a cellular fraction enriched in plasma membranes from sugarcane. Plant Sci. Letters 6, 209–214 (1976)

    Google Scholar 

  • Stickland, R.G.: Oxidation of reduced pyridine nucleotides and of sulphite by pea root mitochondria. Nature (Lond.) 190, 648–649 (1961)

    Google Scholar 

  • Strotmann, H., Hesse, H., Edelmann, K.: Quantitative determination of coupling factor CF1 of chloroplasts. Biochim. Biophys. Acta 314, 202–210 (1973)

    PubMed  Google Scholar 

  • Tager, J.M., Rautanen, N.: Sulphite oxidation by a plant mitochondrial system. Biochim. Biophys. Acta 18, 100–121 (1955)

    Google Scholar 

  • Tolbert, N.E., Oeser, A., Kisaki, T., Hageman, R.H., Yamazaki, R.K.: Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J. Biol. Chem. 243, 5179–5184 (1968)

    PubMed  Google Scholar 

  • Weigl, J., Ziegler, H.: Die räumliche Verteilung von 35S und die Art der markierten Verbindungen in Spinatblättern nach Begasung mit 35SO2. Planta (Berl.) 58, 435–447 (1962)

    Google Scholar 

  • Willenbrinck, J.: Über Beziehungen zwischen Proteinumsatz und Schwefelversorgung der Chloroplasten. Z. Pflanzenphysiol. 56, 427–438 (1967)

    Google Scholar 

  • Ziegler, I.: The effect of SO --3 on the activity of ribulose-1,5-diphosphate carboxylase in isolated spinach chloroplasts. Planta (Berl.) 103, 155–163 (1972)

    Google Scholar 

  • Ziegler, I.: The effect of SO2 pollution on plant metabolism. Res. Rev. 56, 79–105 (1975)

    Google Scholar 

  • Ziegler, I., Libera, W.: The enhancement of CO2-fixation in isolated chloroplasts by low sulfite concentration and by ascorbate. Z. Naturforsch. 30c, 634–637 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, I. Subcellular distribution of 35S-sulfur in spinach leaves after application of 35SO 2-4 , 35SO 2-3 , and 35SO2 . Planta 135, 25–32 (1977). https://doi.org/10.1007/BF00387971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387971

Key words

Navigation