Skip to main content
Log in

Glutathione transferase activity of vacuoles, plastids, and tissue extracts of red beetroot

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Glutathione transferase (GST) activity revealed in vacuoles of red beetroot (Beta vulgaris L.) cells was investigated in comparison with the GST activity of plastids and extracts of tissues. The level of GST activity determined by spectrophotometric method proved fairly high in water extracts and membrane fractions of isolated vacuoles and plastids, as well as in water extracts of tissues. In the objects studied, pH dependence of the GST activity slightly differed. Optimal pH for the vacuolar GST activity was in the range 7.0–7.5, for the GST of plastids and tissue extracts it was 7.5. The GSTs differed in specificity to the substrates fluorodifen and ethacrynic acid. The activity of the vacuolar and tissue extract GSTs with fluorodifen was significantly higher than that of the GST from plastids. Ethacrynic acid, often used as a competitive inhibitor of GST, almost completely inhibited the GST activity assayed with 1-chloro-2,4-dinitrobenzene as a main substrate. However, ethacrynic acid was a substrate only for the GSTs of vacuoles and tissue extract, but not for the GST of plastids. Using zymography allowing estimation of the GST activity in a gel after electrophoresis of proteins, several zones of enzymatic activity were revealed in all objects that may correspond to different isozymes. It was found that the composition of the vacuolar GST isoforms and their substrate specificity may differ from the GSTs of other cellular structures. It is assumed that vacuole, having quite high activity of GST, should make a significant contribution to intracellular detoxification processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDNB:

1-chloro-2,4-dinitrobenzene

EA:

ethacrynic acid

FD:

fluorodifen

GSH:

reduced form of glutathione

GST:

glutathione-S-transferase

MDH:

malate dehydrogenase

References

  1. Riechers D.E., Zhang Q., Xu F., Vaughn K.C. 2003. Tissue-specific expression and localization of safenerinduced glutathione S-transferase proteins in Triticum tauschii. Planta. 217 (5), 831–840.

    Article  CAS  PubMed  Google Scholar 

  2. Mohsenzadeh S., Esmaeili M., Moosavi F., Shahrtash M., Saffari B., Mohabatkar H. 2011. Plant glutathione S-transferase classification, structure and evolution. Afr. J. Biotechnol. 10 (42), 8160–8165.

    Article  CAS  Google Scholar 

  3. Öztetik E.A. 2008. Tale of plant glutathione S-transferases: Since 1970. Bot. Rev. 74 (3), 419–437.

    Article  Google Scholar 

  4. Droog F., Hooykaas P., Van der Zaal B.J. 1995. 2,4- Dichlorophenoxyacetic acid and related chlorinated compounds inhibit two auxin-regulated type-III tobacco glutathione S-transferases. Plant Physiol. 107 (4), 1139–1146.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Edwards R., Dixon D.P., Walbot V. 2000. Plant glutathione S-transferase: Enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5 (5), 193–198.

    Article  CAS  PubMed  Google Scholar 

  6. Edwards R., Dixon D.P. 2005. Plant glutathione transferases. Meth. Enzymol. 401, 169–186.

    Article  CAS  PubMed  Google Scholar 

  7. Dixon D.P., Davis B.G., Edwards R. 2002. Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in A. thaliana. J. Biol. Chem. 277 (34), 30859–30869.

    CAS  Google Scholar 

  8. Deponte M. 2013. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta. 1830 (5), 3217–3266.

    Article  CAS  PubMed  Google Scholar 

  9. Meyer A.J., Rausch T. 2008). Biosynthesis, compartmentation and cellular functions of glutathione in plant cells. In: Sulfur metabolism in phototrophic organisms. Eds. Hell R., Dahl C., Knaff D., Leustek T. Dordrecht: Springer Verlag, p. 165–188.

  10. Flury T., Wagner E., Kreuz K. 1996. An inducible glutathione S-transferase in soybean hypocotylsis localized in the apoplast. Plant Physiol. 112 (3), 1185–1190.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Takahashi Y., Hasezawa S., Kusaba M., Nagata T. 1995. Expression of the auxin-regulated parA gene in transgenic tobacco and nuclear localization of its gene product. Planta. 196 (1), 111–117.

    Article  CAS  PubMed  Google Scholar 

  12. Carter C., Pan S., Zouhar J., Avila E.L., Girke T., Raikhel N.V. 2004. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell. 16 (12), 3285–3303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dixon D., Hawkins T., Hussey J. Edwards R. 2009. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J. Ex. Bot. 60 (4), 1207–1218.

    Article  CAS  Google Scholar 

  14. Leigh R.A., Branton D. 1976. Isolation of vacuoles from root storage tissue of Beta vulgaris L. Plant Physiol. 58 (5), 656–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuzevanov V.Ya, Katkov B.B., Saliaev R.K. 1985). General principles of isolation of vacuoles and vacuolar membranes. In: Struktura i funktsii biologicheskikh membran rastenii (Structure and function of plant biological membranes). Eds. Saliaev R.K., Voinikov V.K. Novosibirsk: Nauka, p. 93–107.

  16. Asada K., Badger M.R. 1984. Photoreduction of 18O2 and H2 18O2 with concomitant evolution of 16O2 in intact spinach chloroplasts: Evidence for scavenging of hydrogen peroxide by peroxidase. Plant Cell Physiol. 25 (7), 1169–1179.

    CAS  Google Scholar 

  17. Edwards G.E., Nakamoto H., Bunell J.N., Hatch M.D. 1985. Pyruvate, Pi dikinase and NADP-malate dehydrogenase in C4 photosynthesis: Properties and mechanism of light/dark regulation. Annu. Rev. Plant Physiol. 36, 255–286.

    Article  CAS  Google Scholar 

  18. Yudina R.S. 2012. Malate dehydrogenase in plants: Its genetics, structure, localization and use as a marker. Advances in Bioscience and Biotechnology. 3 (4), 370–377.

    Article  CAS  Google Scholar 

  19. Levites E.V., 1986. Genetika izofermentov rastenii (Genetics of plant isoenzymes). Novosibirsk: Nauka, Siberian Branch.

    Google Scholar 

  20. Habig W.H., Pabst M.J., Jakoby W.B. 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249 (22), 7130–7139.

    CAS  PubMed  Google Scholar 

  21. Kilili K.G., Atanassova N., Vardanyan A. Clatot N., Al-Sabarna K., Kanellopoulos P.N., Makris A.M., Kampranis S.C. 2004. Differential roles of tau class glutathione S-transferases in oxidative stress. J. Biol. Chem. 279 (23), 24540–24551.

    Article  CAS  PubMed  Google Scholar 

  22. Pascal S., Scalla R. 1999. Purification and characterization of a safener-induced glutathione S-transferase from wheat (Triticum aestivum). Physiol. Plant. 106 (1), 17–27.

    Article  CAS  Google Scholar 

  23. Bradford M. 1976. A rapid and sensitive method for the quantitation of protein utilising the principal of protein- dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  24. Gaal O., Medgyesi G.A., Vereczke, L. 1980. Electrophoresis in the Separation of Biological Macromolecules. New York: John Wiley and Sons.

    Google Scholar 

  25. Gupta S., Rathaur S. 2005. Filarial glutathione S-transferase: Its induction by xenobiotics and potential as drug target. Acta Biochim. 52 (2), 493–500.

    CAS  Google Scholar 

  26. Marrs K.A. 1996. The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 127–158.

    Article  CAS  PubMed  Google Scholar 

  27. Zybailov B., Rutschow H., Friso G., Rudella A., Emanuelsson O., Sun Q., Van Wijk K.J. 2008. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One. 3 (4). doi 10.1371journalpone.0001994

  28. Edwards R., Cole D.J. 1996. Glutathione transferases in wheat (Triticum) species with activity toward fenoxaprop-ethyl and other herbicides. Pestic. Biochem. Physiol. 54 (2), 96–104.

    Article  CAS  Google Scholar 

  29. Cummins I., Cole D.J., Edwards R. 1997. Purification of multiple glutathione transferases involved in herbicide detoxification from wheat (Triticum aestivum L.) treated with the safener fenchlorazole-ethyl. Pestic. Biochem. Physiol. 59 (1), 35–49.

    Article  CAS  Google Scholar 

  30. Zettl R., Schell J., Palme K. 1994. Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3H]indole-3-acetic acid: Identification of a glutathione S-transferase (photoafinity labeling/auxinbinding protein). Plant Biology. 91 (2), 689–693.

    CAS  Google Scholar 

  31. DeRidder B., Dixon D., Beussman D.J. Edwards R., Goldsbrough P.B. 2002. Induction of glutathione S-transferases in Arabidopsis by herbicide safeners. Plant Physiol. 130 (3), 1497–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mozer T.J., Tiemeier D.C., Jaworski E.G. 1983. Purification and characterization of corn glutathione S-transferase. Biochemistry. 22 (5), 1068–1072.

    Article  CAS  PubMed  Google Scholar 

  33. Zeng Q.-Y., Lu H., Wang X.-R. 2005. Molecular characterization of a glutathione transferase from Pinus tabulaeformis (Pinaceae). Biochimie. 87 (5), 445–455.

    Article  CAS  PubMed  Google Scholar 

  34. Dixon D.P., Cole D.J., Edwards R. 1998. Purification, regulation and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type-III GSTs. Plant Mol. Biol. 36 (1), 75–87.

    Article  CAS  PubMed  Google Scholar 

  35. Cottingham C.K., Hatzios K.K., Meredith S. 1998. Influence of chemical treatments on glutathione S-transferases of maize with activity towards metolachlor and cinnamic acid. Z. Naturforsch. 53 (11–12), 973–979.

    CAS  Google Scholar 

  36. Katkov B.B., Korzun A.M., Saliaev R.K. 1990. Preservation of native features of beetroot vacuoles, isolated in solutions of KCL and sorbitol. Fisiologiya rasteniy (Rus). 37 (2), 362–371.

    CAS  Google Scholar 

  37. Phillips M.F., Mantle T.J. 1991. The initial-rate kinetics of mouse glutathione S-transferase YfYf. Evidence for an allosteric site for ethacrynic acid. Biochem. J. 275 (3), 703–709.

    CAS  PubMed  Google Scholar 

  38. Nóvoa-Valiñas M.C. Pérez-López M., Melgar M.J. 2002. Comparative study of the purification and characterization of the cytosolic glutathione S-transferases from two salmonid species: Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 131 (2), 207–213.

    Article  PubMed  Google Scholar 

  39. Cummins I., Cole D.J., Edwards R. 1999. A role for glutathione S-transferase functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J. 18 (3), 285–292.

    Article  CAS  PubMed  Google Scholar 

  40. Dixon D., Cummins L., Cole D.J., Edwards R. 1998. Glutathione-mediated detoxification system in plants. Curr. Opin. Plant Biol. 1 (3), 258–266.

    Article  CAS  PubMed  Google Scholar 

  41. Irzyk C.P., Fuerst E. 1993. Purification and characterization of a glutathione S-transferase from benoxacortreated maize (Zea mays). Plant Physiol. 102 (3), 803–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gronwald J.W., Plaisance K.L. 1998. Isolation and characterization of glutathione S-transferase isozymes from sorghum. Plant Physiol. 117 (3), 877–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deng F., Nagao A., Shim I.S., Usui K. 1996. Induction of glutathione S-transferase isozymes in rice shoots treated with a combination of pretilachlor and fenclorim. J. Weed Sci. Tech. 42 (3), 277–283.

    Article  Google Scholar 

  44. Nimaeva O.D., Pradedova E.V., Saliaev R.K. 2014. Activity and isoenzyme composition of vacuolar peroxidase from the cells of beetroot at various stages of ontogenesis and after changes in storage conditions. Fisiologiya rasteniy (Rus.). 61 (3), 350–358.

    Google Scholar 

  45. Frova C. 2006. Glutathione transferases in the genomics era: New insights and perspectives. Biomol. Eng. 23 (4), 149–169.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Pradedova.

Additional information

Original Russian Text © E.V. Pradedova, O.D. Nimaeva, I.S. Truchan, R.K. Salyaev, 2016, published in Biologicheskie Membrany, 2016, Vol. 33, No. 2, pp. 140–149.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradedova, E.V., Nimaeva, O.D., Truchan, I.S. et al. Glutathione transferase activity of vacuoles, plastids, and tissue extracts of red beetroot. Biochem. Moscow Suppl. Ser. A 10, 223–232 (2016). https://doi.org/10.1134/S1990747816020082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747816020082

Keywords

Navigation