Skip to main content
Log in

Temperature dependence of CO2 assimilation and stomatal aperture in leaf sections of Zea mays

  • Published:
Planta Aims and scope Submit manuscript

Summary

CO2 exchange and air flow through the stomata were measured in leaf sections of Zea mays at temperatures between 7 and 52° and under optimal water supply. The results were summarized in polynomials fitted to the data.

In leaf samples brought from 16° and darkness into different experimental temperatures and light, CO2 assimilation has a maximum near 30°. Above 37° (in other experiments above 41°), net CO2 uptake stops abruptly and is replaced by CO2 evolution in light. If a 1-hr treatment with 25° and light is inserted between darkness and the experimental temperatures, the threshold above which the assimilatory system collapses shifts 3 degrees upwards, to 40° (or 44°); the decline of CO2 assimilation with high temperatures is less steep than without pretreatment; and the upper compensation point moves upscale by as much as 5 degrees.

Stomatal conductance for CO2 does not, in general, follow an optimum curve with temperature. Between 15 and 35° it is approximately proportional to net CO2 assimilation, indicating control by CO2; but above 35°, stomatal aperture increases further with temperature (and so does stomatal variability): the stomata escape the control by CO2 and above 40° may be wide open even if CO2 is being evolved. Stomatal conductance for CO2 below 15° may also be larger than would be proportional to CO2 assimilation.

Net CO2 assimilation and stomatal conductance at 25° were reduced if the leaf samples were pretreated with temperatures below approximately 20° and above 30°. Stomata were more sensitive to past temperatures than was CO2 assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bottländer, W.: Technische Hilfsmittel zur Erzeugung und Ermittlung optimaler Lebensbedingungen für Pflanzen. Bodenkultur 17, 195–236 (1966).

    Google Scholar 

  • Brouwer, R.: Water movement across the root. Symp. Soc. exp. Biol. 19, 131–149 (1965).

    PubMed  Google Scholar 

  • Drake, B. G., Raschke, K., Salisbury, F. B.: Temperatures and transpiration resistances of Xanthium leaves as affected by air temperature, humidity, and wind speed. Plant Physiol. (in press).

  • Freudenberger, H.: Die Reaktionen der Schließzellen auf Kohlensäure und Sauerstoffentzug. Protoplasma (Vienna) 35, 15–54 (1941).

    Google Scholar 

  • Gates, D. M.: Energy, plants, and ecology. Ecology 46, 1–13 (1965).

    Google Scholar 

  • Heath, O. V. S.: Control of stomatal movement by a reduction in the normal carbon dioxide content of the air. Nature (Lond.) 161, 179–181 (1948).

    Google Scholar 

  • —: Light and carbon dioxide in stomatal movements. Handbuch der Pflanzenphysiologie (W. Ruhland, ed.), vol. XVII/I, p. 415–464. Berlin-Göttingen-Heidelberg: Springer 1959.

    Google Scholar 

  • —, Meidner, H.: Effects of carbon dioxide and temperature on stomata of Allium cepa L. Nature (Lond.) 180, 180–182 (1957).

    Google Scholar 

  • Heber, U. W., Santarius, K. A.: Loss of adenosine triphosphate synthesis caused by freezing and its relationship to frost hardiness problems. Plant Physiol. 39, 712–719 (1964).

    Google Scholar 

  • Hesketh, J., Baker, D.: Light and carbon assimilation by plant communities. Crop Sci. 7, 285–293 (1967).

    Google Scholar 

  • Hofstra, G., Hesketh, J. D.: Effects of temperature on the gas exchange of leaves in the light and dark. Planta (Berl.) 85, 228–237 (1969).

    Google Scholar 

  • Idso, S. B.: A holocoenotic analysis of environment-plant relationships. Techn. Bull. No 264, Agric. Expt. Stat., Univ. of Minnesota, St. Paul (1968).

    Google Scholar 

  • —: A theoretical framework for the photosynthetic modeling of plant communities. Advancing Frontiers of Plant Sciences 23, 91–118 (1969).

    Google Scholar 

  • Karvé, A.: Die Wirkung verschiedener Lichtqualitäten auf die Öffnungsbewegung der Stomata. Z. Bot. 49, 47–72 (1961).

    Google Scholar 

  • Ketellapper, H. J.: Stomatal physiology. Ann. Rev. Plant Physiol. 14, 249–267 (1963).

    Article  Google Scholar 

  • Legg, B. J., Parkinson, K. J.: Calibration of infra-red gas analysers for use with carbon dioxide. J. Sci. Instr. (J. Phys. E) Ser. II, 1, 1003–1006 (1968).

    Article  Google Scholar 

  • Levitt, J.: The mechanism of stomatal action. Planta (Berl.) 74, 101–118 (1967).

    Google Scholar 

  • Linsbauer, K.: Beiträge zur Kenntnis der Spaltöffnungsbewegungen. Flora (Jena) 9, 100–143 (1916).

    Google Scholar 

  • Mansfield, T. A.: Studies in stomatal behaviour XII. Opening in high temperature in darkness. J. exp. Bot. 16, 721–731 (1965).

    Google Scholar 

  • Meidner, H., Spanner, D. C.: The differential transpiration porometer. J. exp. Bot. 10, 190–205 (1959).

    Google Scholar 

  • Moss, D. N.: The effect of environment on gas exchange of leaves. Conn. Agric. Exp. Stat., Bull. No 664, 86–100 (1963).

    Google Scholar 

  • Murata, Y., Iyama, J., Honma, T.: Studies on the photosynthesis of forage crops IV. Influence of air-temperature upon the photosynthesis and respiration of alfalfa and several southern type forage crops. Proc. Crop. Sci. Soc. Jap. 34, 154–158 (1965).

    Google Scholar 

  • Raschke, K.: Eignung und Konstruktion registrierender Porometer für das Studium der Schließzellenphysiologie. Planta (Berl.) 67, 225–241 (1965a).

    Google Scholar 

  • —: Die Stomata als Glieder eines schwingungsfähigen CO2-Regelsystems. Experimenteller Nachweis an Zea mays L. Z. Naturforsch. 20b, 1261–1270 (1965b).

    Google Scholar 

  • —: Die Reaktionen des CO2-Regelsystems in den Schließzellen von Zea mays auf weißes Licht. Planta (Berl.) 68, 111–140 (1966).

    Google Scholar 

  • —: Zur Steuerung der Transpiration durch die Photosynthese. Ber. dtsch. bot. Ges. 80, 138–144 (1967).

    Google Scholar 

  • Raschke, K.: Ein Modell zur Beschreibung des Energie- und Gasaustausches eines Maisblattes. Studia biophys. 11, 41–46 (1968).

    Google Scholar 

  • Raschke, K.: Stomatal responses to pressure changes and to interruptions in the water supply of detached leaves of Zea mays L. Plant Physiol., in press.

  • Santarius, K. A., Heber, U.: Das Verhalten von Hill-Reaktion und Photophosphorylierung isolierter Chloroplasten in Abhängigkeit vom Wassergehalt. II. Wasserentzug über CaCl2. Planta (Berl.) 73, 109–137 (1967).

    Google Scholar 

  • Scarth, G. W.: Mechanism of the action of light and other factors on stomatal movement. Plant Physiol. 7, 481–504 (1932).

    Google Scholar 

  • Stålfelt, M. G.: The effect of temperature on opening of the stomatal cells. Physiol. Plantarum (Cph.) 15, 772–779 (1962).

    Google Scholar 

  • Van Bavel, C. H. M., Ehrler, W. L.: Water loss from a sorghum field and stomatal control. Agron. J. 60, 84–86 (1968).

    Google Scholar 

  • Waggoner, P. E.: Predicting the effect upon net photosynthesis of changes in leaf metabolism and physics. Crop Sci. 9, 315–321 (1969).

    Google Scholar 

  • Walker, D. A., Zelitch, I.: Some effects of metabolic inhibitors, temperature and anaerobic conditions on stomatal movement. Plant Physiol. 38, 390–396 (1963).

    Google Scholar 

  • Williams, W. T.: A new theory of the mechanism of stomatal movement. J. exp. Bot. 5, 343–352 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raschke, K. Temperature dependence of CO2 assimilation and stomatal aperture in leaf sections of Zea mays . Planta 91, 336–363 (1970). https://doi.org/10.1007/BF00387507

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387507

Keywords

Navigation