Skip to main content
Log in

Independent translocation of 14C-labelled assimilates and of the floral stimulus in Lolium temulentum

  • Published:
Planta Aims and scope Submit manuscript

Summary

It is widely accepted that the floral stimulus produced in leaves is carried to the shoot apex passively in the phloem with the assimilate stream. Three kinds of evidence presented here suggest that the floral stimulus moves independently of the assimilates.

Simultaneous determination of the velocities of translocation out of the seventh leaf blade, in comparable plants under the same conditions, yielded estimates of 1–2.4 cm/hr for the floral stimulus, and 77–105 cm/hr for 14C-labelled assimilates.

The effect of the size of the seventh leaf on its ability to export assimilates or to initiate flowering was quite different. Leaves with only 14–26% of their final blade area emerged exported little assimilate, yet were highly active in inducing flowering.

The effect of DCMU applications at a range of concentrations on the translocation of assimilates was quite different from their effect on the flowering response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Ballard, L. A. T., and A. E. Grant Lipp: Juvenile photoperiodic sensitivity in Anagallis arvensis L. subsp. Foemina (Mill) Schinz and Thell. Aust. J. biol. Sci. 17, 323–337 (1964).

    Google Scholar 

  • Bhargava, S. C.: A transmissible flower-bud inhibitor in the short-day plant Salvia occidentalis. Proc. kon. ned. Akad. Wet. C 66, 371–376 (1963).

    Google Scholar 

  • Biddulph, O., and R. Cory: Translocation of C14 metabolites in the phloem of the bean plant. Plant Physiol. 40, 119–129 (1965).

    Google Scholar 

  • Bonner, J., and J. Liverman: Hormonal control of flower initiation. In: Growth and differentiation (ed. W. E. Loomis), p. 283–303. Ames: Iowa State University Press 1953.

    Google Scholar 

  • Canny, M. J.: Measurements of the velocity of translocation. Ann. Bot. (Lond.) (N. S.) 25, 152–167 (1961).

    Google Scholar 

  • Chailahjan, M. H.: Translocation of flowering hormones across various plant organs. III. Across the root. C. R. Acad. Sci. U.R.S.S. 27, 373–376 (1940).

    Google Scholar 

  • —, and R. G. Butenko: Translocation of assimilants from leaves to shoots during different photoperiodic regimes of plants. Fiziol. Rasteniî (Transl.) 4, 426–438 (1957).

    Google Scholar 

  • Crafts, A. S.: The chemistry and mode of action of herbicides, pp. 269. New York: Interscience. 1961.

    Google Scholar 

  • —, and O. Lorenz: Fruit growth and food transport in cucurbits. Plant Physiol. 19, 131–138 (1944).

    Google Scholar 

  • Evans, L. T.: Inflorescence initiation in Lolium temulentum L. II. Evidence for inhibitory and promotive photoperiodic processes involving transmissible products. Aust. J. biol. Sci. 13, 429–440 (1960).

    Google Scholar 

  • —: Daylength control of inflorescence initiation in the grass Rottboellia exaltata L. f. Aust. J. biol. Sci. 15, 291–303 (1962).

    Google Scholar 

  • —, and I. F. Wardlaw: Inflorescence initiation in Lolium temulentum L. IV. Translocation of the floral stimulus in relation to that of assimilates. Aust. J. biol. Sci. 17, 1–9 (1964).

    Google Scholar 

  • Evans, N. T. S., M. Ebert, and J. Moorby: A model for the translocation of photosynthate in the soybean. J. exp. Bot. 14, 221–231 (1963).

    Google Scholar 

  • Fratianne, D. G.: The interrelationship between the flowering of dodder and the flowering of some long and short day plants. Amer. J. Bot. 52, 556–562 (1965).

    Google Scholar 

  • Gregory, F. G., and C. R. Hancock: The rate of transport of natural auxin in woody shoots. Ann. Bot. (Lond.) (N.S.) 19, 451–465 (1955).

    Google Scholar 

  • Guttenberg, H. V., u. K. Zetsche: Der Einfluß des Lichtes auf die Auxinbildung und den Auxintransport. Planta (Berl.) 48, 99–134 (1956).

    Google Scholar 

  • Guttridge, C. G.: Further evidence for a growth promoting and flower-inhibiting hormone in strawberry. Ann. Bot. (Lond.) (N.S.) 23, 612–621 (1959).

    Google Scholar 

  • Hartt, C. E., H. P. Kortschak, and G. O. Burr: Effects of defoliation, deradication and darkening the blade upon translocation of C14 in sugarcane. Plant Physiol. 39, 15–22 (1964).

    Google Scholar 

  • ——, A. J. Forbes, and G. O. Burr: Translocation of C14 in sugarcane. Plant Physiol. 38, 305–318 (1963).

    Google Scholar 

  • Imamura, S.: The nature of inhibition of flowering by the leaves illuminated continuously during the inductive dark treatment of other leaves in short day plants. Recent Advanc. Botan. 2, 1287–1288 (1961).

    Google Scholar 

  • —, and A. Takimoto: Transmission rate of photoperiodic stimulus in Pharbitis Nil. Bot. Mag. Tokyo 68, 260–266 (1955).

    Google Scholar 

  • ——: Transmission rate of the photoperiodic stimulus across the graft union in Pharbitis Nil. Chois. Bot. Mag. Tokyo 69, 23–29 (1956).

    Google Scholar 

  • Jacobs, W. P.: Auxin relationships in an intercalary meristem: Further studies on the gynophore of Arachis hypogea L. Amer. J. Bot. 38, 307–310 (1951).

    Google Scholar 

  • Kaldewy, H.: Geschwindigkeit, Intensität und Kapazität des Wuchsstofftransports in geotropisch gereizten Fruchtstielen der Schachblume Fritillaria meleagris L. Planta (Berl.) 60, 178–204 (1963).

    Google Scholar 

  • Kamiya, N.: Protoplasmic streaming. Protoplasmatologia 8/3/a, 1–199 (1959).

    Google Scholar 

  • Khudairi, A. K., and K. G. Hamner: The relative sensitivity of Xanthium leaves of different ages to photoperiodic induction. Plant Physiol. 29, 251–257 (1954).

    Google Scholar 

  • Lang, A.: Physiology of flowering. Ann. Rev. Plant Physiol. 3, 265–306 (1952).

    Google Scholar 

  • —: Physiology of flower initiation. In: Encyclopaedia plant physiology, vol. 15/1, p. 1380–1536. Berlin-Heidelberg-New York: Springer 1965.

    Google Scholar 

  • Leopold, A. C., and S. L. Lam: Polar transport of three auxins. In: Plant Growth Regulation, p. 411–418. Ames: Iowa State University Press. 1961.

    Google Scholar 

  • Lockhart, J. A.: Mechanism of the photoperiodic process in higher plants. In: Encyclopaedia Plant Physiology, vol. 16, p. 390–438. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • McComb, A. J.: The stability and movement of gibberellic acid in pea seedlings. Ann. Bot. (Lond.) (N.S.) 28, 669–687 (1964).

    Google Scholar 

  • Mitchell, J. W., and J. F. Worley: Intracellular transport apparatus of phloem fibres. Science 145, 409–410 (1964).

    Google Scholar 

  • Mortimer, D. C.: Translocation of the products of photosynthesis in sugar beet petioles. Canad. J. Bot. 43, 269–280 (1965).

    Google Scholar 

  • Moshkov, B. S.: Transfer of photoperiodic reaction from leaves to growing points. C. R. Acad. Sci. U.R.S.S. 24, 489–491 (1939).

    Google Scholar 

  • Neely, P. M., and B. O. Phinney: The use of the mutant dwarf-1 of maize as a quantitative bioassay for gibberellin activity. Plant Physiol. 32, Suppl. XXXI (1957).

  • Newman, I. A.: Distribution of indolyl-3-acetic acid labelled with carbon-14 in Avena. Nature (Lond.) 205, 1336–1337 (1965).

    Google Scholar 

  • Pilet, P. E.: Action de la kinétine sur le transport de l'acide β-indolylacetique marqué par du radiocarbone. C. R. Acad. Sci (Paris) 260, 4053–4056 (1965).

    Google Scholar 

  • Salisbury, F. B.: The dual role of auxin in flowering. Plant Physiol. 30, 327–334 (1955).

    Google Scholar 

  • Searle, N. E.: Persistence and transport of flowering stimulus in Xanthium. Plant Physiol. 36, 656–662 (1961).

    Google Scholar 

  • Stout, M.: Translocation of the reproductive stimulus in sugar beets. Bot. Gaz. 107, 86–95 (1945).

    Google Scholar 

  • Thrower, S. L.: Translocation of labelled assimilates in the soybean II. The pattern of translocation in intact and defoliated plants. Aust. J. biol. Sci. 15, 629–649 (1962).

    Google Scholar 

  • Vernon, L. P., and S. Aronoff: Metabolism of soybean leaves IV. Translocation from soybean leaves. Arch. Biochem. 36, 383–389 (1952).

    Google Scholar 

  • Wardlaw, I. F.: The velocity and pattern of assimilate translocation in wheat plants during grain development. Aust. J. biol. Sci. 18, 269–281 (1965).

    Google Scholar 

  • Webb, J. A., and P. R. Gorham: Translocation of photosynthetically assimilated C14 in straight necked squash. Plant Physiol. 39, 663–672 (1964).

    Google Scholar 

  • Went, F. W., and R. White: Experiments on the transport of auxin. Bot. Gaz. 100, 465–484 (1939).

    Google Scholar 

  • Withrow, A. P., and R. B. Withrow: Translocation of the floral stimulus in Xanthium. Bot. Gaz. 104, 409–416 (1943).

    Google Scholar 

  • Zeevaart, J. A. D.: Flower formation as studied by grafting. Meded. Landbouwhogeschool Wageningen 58 (3), 1–88 (1958).

    Google Scholar 

  • —: Physiology of flowering. Science 137, 723–731 (1962).

    Google Scholar 

  • —: Climatic control of reproductive development. In: Environmental control of plant growth (ed. L. T. Evans), p. 289–310. New York: Academic Press 1963.

    Google Scholar 

  • Zimmermann, M. H.: Translocation of organic substances in the phloem of tress. In: The physiology of forest trees (ed. K. V. Thimann), p. 381–400. Harvard University 1958.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, L.T., Wardlaw, I.F. Independent translocation of 14C-labelled assimilates and of the floral stimulus in Lolium temulentum . Planta 68, 310–326 (1966). https://doi.org/10.1007/BF00386331

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00386331

Keywords

Navigation