Skip to main content
Log in

Ca2+ transport in mitochondrial and microsomal fractions from higher plants

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Mitochondria from etiolated corn possess a much greater Ca2+ uptake capacity per mg protein than microsomes from the same source. Differences in energy requirements, sensitivity to specific inhibitors, and sedimentation properties enabled us to study both Ca2+ uptake mechanisms without mutual contamination. The microsomal Ca2+ uptake does not vary much among different plants as compared to the mitochondrial Ca2+ uptake; this is also true for different organs of the same plant. Mitochondrial Ca2+ uptake is more dependent on the age of the seedlings than microsomal uptake, because of changes in active Ca2+ uptake activity rather than of changes in efflux. Intactness and the oxidative and phosphorylative properties of the mitochondria remained unchanged during this time period. Na+ and Mg2+ do not induce Ca2+ release from mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

adenosine triphosphate

ADP:

adenosine diphosphate

NADH2 :

β-nicotinamide adenin dinucleotide, reduced form

Mops:

3-(N-morpholino)propane-sulfonic acid

Tris:

tris-(hydroxymethyl)-aminomethane

Hepes:

hydroxyethylpiperazine-N′-2-ethanesulfonic acid

BSA:

bovine serum albumin

EDTA:

(ethylene-dinitrilo)-tetraacetic acid

EGTA:

ethylene glycol-bis(β-aminoethylether)-N,N′-tetraacetic acid

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

DTE:

1,4-dithiothreitol

References

  • Appelmans, F.R., Wattlaux R., de Duve, C. (1955) Tissue fractionation studies: 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem. J. 59, 438–445

    Google Scholar 

  • Ash, G.R., Bygrave, F.L. (1977) Ruthenium red as a probe in assessing the potential of mitochondria to control intracellular calcium in liver. FEBS Lett 78, 166–168

    Google Scholar 

  • Bonner, W.D., Jr. (1967) Plant mitochondria. In: Methods in enzymologie, vol. 10, pp. 125–133, Estabrook, R.W., Pullman, M.E., eds. Academic Press, New York

    Google Scholar 

  • Bonner, W.D., Jr. (1974) Plant mitochondria. In: Exp. plant physiology, pp. 125–133, San Pietro, A. ed. The C.V. Mosby Company, St. Louis

    Google Scholar 

  • Bowman, B.J., Slayman, C.W. (1979) The effects of vanadate on the plasma membrane ATPase of Neurospora crassa. J. Biol. Chem. 254, 2928–2934

    Google Scholar 

  • Bygrave, F.L. (1978) Calcium movements in cells. TIBS 3, 175–178

    Google Scholar 

  • Carafoli, E. (1974) Mitochondrial uptake of calcium ions and the regulation of cell function. Biochem. Soc. Symp. 39, 89–109

    Google Scholar 

  • Carafoli, E., Lehninger, A.L. (1971) A survey of the interaction of calcium with mitochondria from different tissues and species. Biochem. J. 122, 681–690

    Google Scholar 

  • Carafoli, E., Crompton, M., Malmström, K., Siegel, E., Saltman, M., Affolter, H. (1977) Mitochondrial calcium transport and the intracellular calcium homeostasis. In: Biochemistry of membrane transport, pp. 535–551, Semenza, G., Carafoli, E., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Charbonneau, H., Cormier, M.J. (1979) Purification of plant calmodulin by fluphenazine-sepharose affinity chromatography. Biochem. Biophys. Res. Commun. 90, 1039–1047

    Google Scholar 

  • Chen, C.H., Lehninger, A.L. (1973) Ca2+ transport activity in mitochondria from some plant tissues. Arch. Biochem. Biophys. 157, 183–196

    Google Scholar 

  • Crompton, M., Capano, M., Carafoli, E. (1976) The sodium-induced efflux of Ca2+ from mitochondria. A possible mechanism for the regulation of mitochondrial Ca2+. Eur. J. Biochem. 69, 453–469

    Google Scholar 

  • Dieter, P., Marmé, D. (in press) Calmodulin activation of plant microsomal Ca2+ uptake. Proc. Nat. Acad. Sci. USA

  • Douce, R., Christensen, E.L., Bonner, W.D., Jr. (1976) Preparation of intact plant mitochondria. Biochim. Biophys. Acta 275, 148–160

    Google Scholar 

  • Dreyer, E.M., Weisenseel, M.M. (1979) Phytochrome-mediated uptake of calcium in Mougeotia cells. Planta 146, 31–40

    Google Scholar 

  • Gamborg, O.C., Miller, R.O., Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50, 151–158

    Google Scholar 

  • Griffing, L.R., Ray, P.M. (1979) Dependence of cell wall secretion on calcium. Plant Physiol. 63, 51

    Google Scholar 

  • Gross, J., Ayadi, A., Marmé, D. (1979) Protochlorophyll(ide)630 photosensitizes active Ca2+ accumulation in microsomal and mitochondrial fractions isolated from plants. Photochem. Photobiol. 30, 615–621

    Google Scholar 

  • Gross, J., Marmé, D. (1978) ATP-dependent Ca2+ uptake into plant membrane vesicles. Proc. Nat. Acad. Sci. USA 75, 1232–1236

    Google Scholar 

  • Hales, C.N., Luzio, J.P., Chandler J.A., Herman, K. (1974) Localization of calcium in the smooth endoplasmic reticulum of rat isolated fat cells. J. Cell Sci. 15, 1–15

    PubMed  Google Scholar 

  • Hertel, C., Quader, H., Robinson, D.G., Marmé, D. (1980) Antimicrotubular herbicides and fungicides affect Ca2+ transport in plant mitochondria. Planta 149, 336–340

    Google Scholar 

  • Hodges, T.K., Hanson, J.B. (1965) Calcium accumulation by maize mitochondria. Plant Physiol. 40, 101–108

    Google Scholar 

  • Jacobus, W.E., Tiozzo, R., Lugli, G., Lehninger, A.L., Carafoli, E. (1975) Effects of energy-linked calcium accumulation by rat liver mitochondria. J. Biol. Chem. 250, 7863–7870

    Google Scholar 

  • Jaffe, L.A., Weisenseel, M.M., Jaffe, L.F. (1975) Calcium accumulations within the growing tip of pollen tubes. J. Cell. Biol. 67, 488–492

    PubMed  Google Scholar 

  • Lehninger, A.L., Carafoli, E., Rossi, C.S. (1967) Energy-linked movements in mitochondrial systems. Adv. Enzymol. 29, 259–321 brane calcium pump in bovine adrenal medulla but not adrenal cortex. Biochim. Biophys. Acta 394, 227–238

    Google Scholar 

  • Lin, Y.M., Lin, Y.P., Cheung, W.Y. (1974) Cyclic 3′:5′-nucleotide phosphedicsterase. J. Biol. Chem. 249, 4943–4954

    Google Scholar 

  • Marmé, D., Gross, J. (1979) Active and passive Ca2+ fluxes in membrane vesicles from corn. In: Recent advances in the biochemistry of cereals, pp. 27–36, Laidman, D.L., Wyn Jones, R.G., eds. Academic Press, London New York San Francisco

    Google Scholar 

  • Martonosi, A. (1972) Biochemical and clinical aspects of sarcoplasmic reticulum function. In: Current topics in membrane transport, vol. 3, pp. 83–197, Bonner, F., Kleinzeller A., eds. Academic Press. New York London

    Google Scholar 

  • Nultsch W. (1979) Effect of external factors on phototaxis of Chlamydomonas reinhardtii Arch. Microbiol. 123, 93–99

    Google Scholar 

  • Ray, P.M. (1973) Regulation of β-glucan synthestase activity by auxin in pea stem tissue. Plant Physiol. 51, 601–604

    Google Scholar 

  • Ray, P.M. (1979) Maize coleoptile cellular membranes bearing different types of glucan synthetase activity. In: Plant organelles, methological surveys (B): Biochemistry, vol. 9, pp. 135–146, Reid, E., ed. Ellis Horwood Publishers, New York Chichester Brisbane Toronto

    Google Scholar 

  • Reiss, H.D., Herth, W. (1979) Calcium ionophore A 23187 affects localized wall secretion in the tip region of pollen tubes of Lilium longiflorum. Planta 145, 225–232

    Google Scholar 

  • Schatzmann H. (1966) ATP-dependent Ca2+ extrusion from human red cells. Experientia 22, 364–365

    Google Scholar 

  • Spector, T. (1978) Refinement of the Coomassie blue method of protein quantitation. Anal. Biochem. 86, 142–146

    PubMed  Google Scholar 

  • Stroobant, P., Dame, J.B., Scarborough, G.A. (1980) The Neurospora plasma membrane Ca2+ pump. Fed. Proc. 39, 2437–2441

    Google Scholar 

  • Vanden Driessche, T. (1978) The molecular mechanism of Mimosa leaf seismonatic movement. Arch. Biol. Sci. 89, 435–449

    Google Scholar 

  • Vercesi, A., Reynafarje, B., Lehninger, A.L. (1978) Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transport in rat heart mitochondria. J. Biol. Chem. 253, 6379–6385

    Google Scholar 

  • Wilson, R.H., Graesser, R.J. (1976) Ion transport in plant mitochondria. In: Encyclopedia of plant physiology, New Series, vol. 3, pp. 377–397. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dieter, P., Marmé, D. Ca2+ transport in mitochondrial and microsomal fractions from higher plants. Planta 150, 1–8 (1980). https://doi.org/10.1007/BF00385606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385606

Key words

Navigation