Skip to main content
Log in

Polar auxin transport and auxin-induced elongation in the absence of cytoplasmic streaming

  • Published:
Planta Aims and scope Submit manuscript

Summary

When cytoplasmie streaming in oat and maize coleoptile cells is completely inhibited by cytochalasin B (CB), polar transport of auxin (indole-3-acetic acid) continues at a slightly reduced rate. Therefore, cytoplasmic streaming is not required for polar transport. Auxin induces elongation in CB-inhibited coleoptile and pea stem segments, but elongation rate is reduced about 40% by CB. Therefore, stimulation of cytoplasmic streaming cannot be the means by which auxin promotes cell elongation, but streaming may be beneficial to elongation growth although not essential to it. A more severe inhibition of elongation develops after several hours in CB. With coleoptiles this could be due to inhibition of sugar uptake; in pea tissue it may be due to permeability changes and cytoplasmic degeneration. CB does not disorganize or disorient microfilament bundles when it inhibits streaming in maize, but appears instead to cause hypercondensation of microfilament material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arisz, W. H.: Intercellular polar transport and the role of the plasmodesmata in coleoptiles and Vallisneria leaves. Acta bot. neerl. 18, 14–38 (1969).

    Google Scholar 

  • Bradley, M. O.: Microfilaments and cytoplasmic streaming: inhibition of streaming with cytochalasin. J. Cell Sci. 12, 327–343 (1973).

    Google Scholar 

  • Bryan, J.: Definition of three classes of binding sites in isolated microtubule crystals. Biochemistry 11, 2611–2616 (1972).

    Google Scholar 

  • Burnside, B., Manasek, F. J.: Cytochalasin B: problems in interpreting its effects on cells. Develop. Biol. 27, 443–444 (1972).

    Google Scholar 

  • Carter, S. B.: The cytochalasins as research tools in cytology. Endeavour 31, 77–82 (1972).

    Google Scholar 

  • Christiansen, G. S.: The metabolism of stem tissue during growth and its inhibition. V. Nature and significance of the exudate. Arch. Biochem. Biophys. 29, 354–368 (1950).

    Google Scholar 

  • Christiansen, G. S., Thimann, K. V.: The metabolism of stem tissue during growth and its inhibition. I. Carbohydrates. Arch. Biochem. Biophys. 26, 230–247 (1959).

    Google Scholar 

  • Christie, A. E., Leopold, A. C.: Entry and exit of indoleacetic acid in corn coleoptiles. Plant Cell Physiol. 6, 453–465 (1965).

    Google Scholar 

  • Clark, W. G.: Electrical polarity and auxin transport. Plant Physiol. 13, 529–552 (1938).

    Google Scholar 

  • Daniel, J. W., Järlfors U.: Plasmodial ultrastructure of the myxomycete Physarum polycephalum. Tissue and Cell 4, 15–36 (1972).

    Google Scholar 

  • Du Buy, H. G., Olson, R. A.: The relation between respiration, protoplasmic streaming and auxin transport in the Avena coleoptile, using a polarographic microrespirometer. Amer. J. Bot. 27, 401–413 (1940).

    Google Scholar 

  • Estensen, R. D., Plagemann, P. G. W.: Cytochalasin B: inhibition of glucose and glucosamine transport. Proc. nat. Acad. Sci. (Wash.) 69, 1430–1434 (1972).

    Google Scholar 

  • Estensen, R. D., Rosenberg, M., Sheridan, J. D.: Cytochalasin B: microfilaments and “contractile” processes. Science 173, 356–357 (1971).

    Google Scholar 

  • Forer, A., Emmersen, J., Behnke, O.: Cytochalasin B: does it affect actin-like filaments? Science 175, 774–776 (1972).

    Google Scholar 

  • Galston, A. W., Purves, W. K.: The mechanism of action of auxin. Ann. Rev. Plant Physiol. 11, 239–276 (1960).

    Google Scholar 

  • Goldsmith, M. H. M.: Movement of indoleacetic acid in coleoptiles of Avena sativa L. II. Suspension of polarity by total inhibition of the basipetal transport. Plant Physiol. 41, 15–27 (1966).

    Google Scholar 

  • Goldsmith, M. H. M.: Transport of plant growth regulators. In: The physiology of growth and development, M. B. Wilkins, ed., p. 127–162. London: McGraw-Hill Book Co., 1969.

    Google Scholar 

  • Goldmith, M. H. M., Ray, P. M.: Intracellular locatization of the active process in polar transport of auxin. Planta (Berl.) 111, 297–314 (1973).

    Google Scholar 

  • Goldsmith, M. H. M., Thimann, K. V.: Some characteristics of movement of indoleacetic acid in coleoptiles of Avena. I. Uptake, destruction, immobilization and distribution of IAA during basipetal translocation. Plant Physiol. 37, 492–505 (1962).

    Google Scholar 

  • Haslam, R. J.: Inhibition of blood platelet function by cytochalasins: effects on thrombosthenin and on glucose metabolism. Biochem. J. 127, 34P (1972).

    Google Scholar 

  • Hertel, R., Flory, R.: Auxin movement in corn coleoptiles. Planta (Berl.) 82, 123–144 (1968).

    Google Scholar 

  • Herth, W., Franke, W. W., Vanderwoude, W. J.: Cytochalasin stops tip growth in plants. Naturwissenschaften 59, 38–39 (1972).

    Google Scholar 

  • Holtzer, H., Sanger, J. W.: Cytochalasin B: microfilaments, cell movement and what else? Develop. Biol. 27, 444–446 (1972).

    Google Scholar 

  • Kamitsubo, E.: Mobile protoplasmic fibrils in cells of Characeae. Protoplasma (Wien) 74, 53–70 (1972).

    Google Scholar 

  • Kletzien, R. F., Perdue, J. F., Springer, A.: Cytochalasin A and B. Inhibition of sugar uptake in cultured cells. J. biol. Chem. 247, 2964–2966 (1972).

    Google Scholar 

  • Krishan, A., Whitlock, S.: Cytochalasin B: time-lapse cinematographic studies on its effects on cytokinesis. J. Cell Biol. 54, 657–664 (1972).

    Google Scholar 

  • Larsen, P.: 3-indoleacetaldehyde as a growth hormone in higher plants. Dansk Botan. Ark. 11 11–129 (1944).

    Google Scholar 

  • Leopold, A. C., de la Fuente, R. K.: A view of polar auxin transport. In: Transport of plant hormones p. 24–47, Y. Vardar, ed., Amsterdam: North-Holland Publ. Co. 1968.

    Google Scholar 

  • Mascarenhas, J. P., La Fountain, J.: Protoplasmic streaming, cytochalasin B and growth of the pollen tube. Tissue and Cell 4, 11–14 (1972).

    PubMed  Google Scholar 

  • Nagai, R., Rebhun, L. I.: Cytoplasmic microfilaments in streaming Nitella cells. J. Ultrastruct. Res. 14, 571–589 (1966).

    Google Scholar 

  • Newman, I. A.: Auxin transport in Avena. I. Indoleacetic acid-C14 distributions and speeds. Plant Physiol. 46, 263–272 (1970).

    Google Scholar 

  • O'Brien, T. P., Thimann, K. V.: Intracellular fibers in oat coleoptile cells and their possible significance in cytoplasmic streaming. Proc. nat. Acad. Sci. (Wash.) 56, 888–894 (1966).

    Google Scholar 

  • Öpik, H.: Some observations on coleoptile cell ultrastructure in ungerminated grains of rice (Oryza sativa L.). Planta (Berl.) 102, 61–71 (1972).

    Google Scholar 

  • Ordin, L., Applewhite, T. H., Bonner, J.: Auxin-induced water uptake by Avena coleoptile sections. Plant Physiol. 31, 44–53 (1956).

    Google Scholar 

  • Palevitz, B. A.: Effect of cytochalasin B on stomatal differentiation in Allium. J. Cell Biol. 55, 198a (1972).

    Google Scholar 

  • Schneider, C. L.: The interdependence of auxin and sugar for growth. Amer. J. Bot. 25, 258–270 (1938).

    Google Scholar 

  • Showacre, J. L., du Buy, H. G.: The relationship of water availability and auxin in the growth of Avena coleoptiles and its meaning for a theory of tropisms. Amer. J. Bot. 34, 175–182 (1947).

    Google Scholar 

  • Sweeney, B. M., Thimann, K. V.: The effect of auxins on protoplasmic streaming. II. J. gen. Physiol. 21, 439–461 (1937).

    Article  Google Scholar 

  • Sweeney, B. M., Thimann, K. V.: The effect of auxins on protoplasmic streaming, III. J. gen. Physiol. 25, 841–854 (1942).

    Article  Google Scholar 

  • Thimann, K. V.: Plant growth hormones. In: The hormones, physiology, chemistry and applications, vol. 1, p. 1–76, G. Pincus and K. V. Thimann, eds. New York: Acad. Press 1948.

    Google Scholar 

  • Turner, W. G., Carter, S. B.: The chemistry and some biological properties of the cytochalasins. Biochem. J. 127, 1P (1972).

    Google Scholar 

  • Wagner, G., Haupt, W., Laux, A.: Reversible inhibition of chloroplast movement by cytochalasin B in the green alga Mougeotia. Science 176, 808–809 (1972).

    Google Scholar 

  • Weij, H. G., van der: Der Mechanismus des Wuchstofftransportes. Rec. Trav. Bot. Néerl. 29, 379–496 (1932).

    Google Scholar 

  • Went, F. W.: Wuchstoff und Wachstum. Rec. Trav. Bot. Néerl. 25, 1–116 (1928).

    Google Scholar 

  • Wessels, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Ludueña, M. A., Taylor, E. L., Wrenn, J. T., Yamada, K. M.: Microfilaments in cellular and developmental processes. Science 171, 135–143 (1971).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cande, W.Z., Goldsmith, M.H.M. & Ray, P.M. Polar auxin transport and auxin-induced elongation in the absence of cytoplasmic streaming. Planta 111, 279–296 (1973). https://doi.org/10.1007/BF00385548

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385548

Keywords

Navigation