Skip to main content
Log in

Crassulacean acid metabolism (CAM) in Kalanchoë daigremontiana: Temperature response of phosphoenolpyruvate (PEP)-carboxylase in relation to allosteric effectors

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Net CO2 dark fixation of Kalanchoë daigremontiana varies with night temperature. We found an optimum of fixation at about 15° C; with increasing night temperature fixation decreased. We studied the temperature dependence of the activity of phosphoenolpyruvate (PEP)-carboxylase, the key enzyme for CO2 dark fixation. We varied the pH, the substrate concentration (PEP), and the L-malate and glucose-6-phosphate (G-6-P) concentration in the assay. Generally, lowering the pH and reducing the amount of substrate resulted in an increase in activation by G-6-P and in an increase in malate inhibition of the enzyme. Furthermore, malate inhibition and G-6-P activation increased with increasing temperature. Activity measurements between 10° C and 45°C at a given concentration of the effectors revealed that the temperature optimum and maximum activities at that optimum varied with the effector applied. Under the influence of 5 mol m-3 L-malate the temperature optimum and maximum activity dropped drastically, especially when the substrate level was low (at 0.5 mol m-3 PEP from 32° C to 20° C). G-6-P raised the temperature optimum and maximum activity when the substrate level was low. If both malate and G-6-P were present, intermediate values were measured. We suggest that changes in metabolite levels in K. daigremontiana leaves can alter the temperature features of PEP-carboxylase so that the observed in vivo CO2 dark fixation can be explained on the basis of PEP-carboxylase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PEP-c:

phosphoenolpyruvate carboxylase

CAM:

crassulacean acid metabolism

PEP:

phosphoenolpyruvate

G-6-P:

glucose-6-phosphate

References

  • Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254

    Article  PubMed  Google Scholar 

  • Brandon, P.C. (1967) Temperature features of enzymes affecting crassulacean acid metabolism. Plant Physiol. 42, 977–984

    Google Scholar 

  • Brunnhöfer, H., Schaub, H., Egle, K. (1968) Der Verlauf des CO2-und O2-Gaswechsels bei Bryophyllum daigremontianum in Abhängigkeit von der Temperatur. Z. Pflanzenphysiol. 59, 285–292

    Google Scholar 

  • Cockburn, W., McAulay, A. (1977) Changes in metabolite levels in Kalanchoë daigremontiana and regulation of malic acid accumulation in crassulacean acid metabolism. Plant Physiol. 59, 455–458

    Google Scholar 

  • Gerwick, B.C., Williams, G.J., Spalding, M.H., Edwards, G.E. (1978) Temperature response of CO2 fixation in isolated Opuntia cells. Plant Sci. Lett. 13, 389–396

    Google Scholar 

  • Gulmon, S.L., Bloom, A.J. (1979) C3-photosynthesis and high temperature acclimation of CAM in Opuntia basilaris Engelm. and Bigel. Oecologia 38, 217–222

    Google Scholar 

  • Hanscom, III, Z., Ting, I.P. (1978) Irrigation magnifies CAM photosynthesis in Opuntia basilaris (Cactaceae). Oecologia 33, 1–5

    Google Scholar 

  • Jones, R., Buchanan, I.C., Wilkins, M.B., Fewson, C.A., Malcolm, A.D.B. (1981) Phosphoenolpyruvate carboxylase from the crassulacean plant Bryophyllum fedtschenkoi Hamet and Perrier: Activity changes and kinetic behaviour in crude extracts. J. Exp. Bot. (in press)

  • Jones, R., Wilkins, M.B., Coggins, J., Fewson, C.A., Malcolm, A.D.B. (1978) Phosphoenolpyruvate carboxylase from crassulacean plant Bryophyllum fedtschenkoi Hamet and Perrier: Purification, molecular and kinetic properties. Biochem. J. 175, 391–406

    Google Scholar 

  • Kaplan, A., Gale, J., Poljakoff-Mayber, A. (1976) Resolution of net dark fixation of carbon dioxide into its respiration and gross fixation components in Bryophyllum daigremontianum. J. Exp. Bot. 27, 220–230

    Google Scholar 

  • Kluge, M. (1976) Models of CAM regulation. In: CO2 metabolism and plant productivity, pp.205–216, Burris, R.H., Black, C.C., eds. University Park Press, Baltimore London Tokyo

    Google Scholar 

  • Kluge, M., Ting, L.P. (1978) Crassulacean acid metabolism-CAM. Analysis of an ecological adaptation. Ecological Studies, Vol. 30, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kluge, M., Böcher, M., Jungnickel, G. (1980) Metabolic control of crassulacean acid metabolism: Evidence for diurally changing sensitivity against inhibition by malate of PEP-carboxylase in Kalanchoöe tubiflora Hamet et Perrier. Z. Pflanzenphysiol. 97, 197–204

    Google Scholar 

  • Kluge, M., Lange, O.L., Eichmann, M., Schmid, R. (1973) Diurnaler Säurerhythmus bei Tillandsia usneoides: Untersuchungen über den Weg des Kohlenstoffs sowie die Abhängigkeit des CO2-Gaswechsels von Lichtintensität, Temperature und Wassergehalt der Pflanze. Planta 112, 357–372

    Google Scholar 

  • Lange, O.L., Schulze, E.D., Kappen, L., Evenari, M., Buschbom, U. (1975) CO2 exchange pattern under natural conditions of Caralluma negevensis, a CAM plant of the Negev desert. Photosynthetica 9, 318–326

    Google Scholar 

  • Lüttge, U., Ball, E. (1979) Electrochemical investigation of active malic acid transport in the tonoplast into the vacuoles of the CAM plant Kalanchoë daigremontiana. J. Membr. Biol. 47, 401–422

    Google Scholar 

  • Medina, E., Delgado, M., Troughton, J.H., Medina, J.D. (1977) Physiological ecology of CO2 fixation in Bromediaceae. Flora 166, 137–152

    Google Scholar 

  • Neales, T.F. (1973a) The effect of night temperature on the assimilation of carbon dioxide by mature pineapple plants Ananas comosus (L.) Merr. Aust. J. Biol. Sci. 26, 539–546

    Google Scholar 

  • Neales, T.F. (1973b) The effect of night temperature on CO2 assimilation, transpiration and water use efficiency in Agave americana. Aust. J. Biol. Sci. 26, 705–714

    Google Scholar 

  • Osmond, C.B. (1978) Crassulacean acid metabolism: A curiosity in context. Annu. Rev. Plant Physiol. 29, 379–414

    Article  Google Scholar 

  • Osmond, C.B., Nott, D.L., Firth, P.M. (1979) Carbon assimilation patterns and growth of the introduced CAM plant Opuntia inermis in Eastern Australia. Oecologia 40, 331–350

    Google Scholar 

  • Pays, G.G., Jones, R., Wilkins, M.B., Fewson, C.A., Malcolm, A.D.B. (1980) Kinetic analysis of effectors of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi. Biochim. Biophys. Acta 614, 151–162

    Google Scholar 

  • Pierre, J.N., Queiroz, O. (1979) Regulation of glycolysis and level of the crassulacean acid metabolism. Planta 144, 143–151

    Google Scholar 

  • Ting, I.P., Osmond, C.B. (1973) Activation of plant P-enolpyruvate carboxylase by glucose-6-phosphate: A particular role in crassulacean acid metabolism. Plant Sci. Lett. 1, 123–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchanan-Bollig, I.C., Kluge, M. Crassulacean acid metabolism (CAM) in Kalanchoë daigremontiana: Temperature response of phosphoenolpyruvate (PEP)-carboxylase in relation to allosteric effectors. Planta 152, 181–188 (1981). https://doi.org/10.1007/BF00385142

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385142

Key words

Navigation