Skip to main content
Log in

Quantenausbeute und unterschiedliches Verhalten der beiden Photosysteme des Photosyntheseapparates während des Entwicklungsablaufes von Scenedesmus obliquus in Synchronkulturen

Quantum yield and variable behavior of the two photosystems of the photosynthetic apparatus during the life cycle of Scenedesmus obliquus in synchronous cultures

  • Published:
Planta Aims and scope Submit manuscript

Summary

Cultures of Scenedesmus obliquus strain D3 synchronized in a light-dark regime of 14:10 hours were used for studies of the photosynthetic activity during the life cycle of the organism.

The quantum yield measured throughout the life cycle follows closely the photosynthetic capacity, with a maximum at the 8th and a minimum at the 16th hour in cells whose life cycle was initiated with the beginning of the light period.

The amount of photosystem II activity (measured as p-benzoquinone Hill-reaction) and the action spectra demonstrate the same decrease from the 8th to the 16th hour as quantum yield does. However, the reaction of photosystem I seems to be the same throughout the life cycle, when measured as photoreduction or as a part of the light induced absorption change at 520 nm.

With support from the observation that the Emerson-enhancement effect is highest at the 8th and lowest at the 16th hour of the life cycle, it was concluded that the two photosystems work with highest activity and in pace at the 8th hour. At the 16th hour the activity of photosystem I remains constant. Since cyclic photophosphorylation is higher at the 16th than at the 8th hour, it is suggested that the capacity of photosystem I, which is freed from photosystem II by a decreased electron flow, is used for additional cyclic photophosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Bishop, N.I.: The influence of the herbicide, DCMU, on the oxygen-evolving system of photosynthesis. Biochim. biophys. Acta (Amst.) 27, 205–206 (1958).

    Google Scholar 

  • —: Mutations of unicellular green algae and their application to the studies on the mechanism of photosynthesis. Record chem. Prog. 25, 181–195 (1964).

    Google Scholar 

  • —: Partial reactions of photosynthesis and photoreduction. Ann. Rev. Plant Physiol. 17, 185–208 (1966).

    Google Scholar 

  • —: Comparison of the action spectra and quantum requirements for photosynthesis and photoreduction of Scenedesmus. Photochem. Photobiol. 6, 621–628 (1967).

    PubMed  Google Scholar 

  • Brown, J. S., French, C. S.: Absorption spectra and relative photostability of the different forms of chlorophyll in Chlorella. Plant Physiol. 34, 305–309 (1959).

    Google Scholar 

  • De Kouchkovsky, Y., Fork, D. C.: A possible functioning in vivo of plastocyanin in photosynthesis as revealed by light-induced absorbance change. Proc. nat. Acad. Sci. (Wash.) 52, 232–239 (1964).

    Google Scholar 

  • Duysens, L. M. N.: Reversible changes in the absorption spectrum of Chlorella upon irradiation. Science 120, 353–354 (1954).

    Google Scholar 

  • Emerson, R.: Diskussionsbemerkung zu J. Myers: On uniformity of experimental material. In: Research in photosynthesis, p. 489 (ed. H. Gaffron). New York: Interscience 1957.

    Google Scholar 

  • Emerson, R., Chalmers, R. V., Woodstock, L., Lasher, A.: Transient changes in respiration and photosynthesis at different stages of development of Chlorella cells. Vortrag auf dem 29. Ann. Meeting Am. Soc. Plant Physiol., Gainesville Florida, Sept. 1954.

  • Fork, D. C., Amesz, J., Anderson, J. M.: Light-induced reactions of chlorophyll b and P 700 in intact plants and chloroplast fragments. In: Energy conversion by the photosynthetic apparatus, p. 81–94, Brookhaven Symp. Biol. 19 (1967).

  • French, C. S., Towner, G. H., Bellis, D. R., Cook, R. M., Fair, W. R., Holt, W. W.: A curve analyzer and general purpose graphical computer. Rev. sci. Instr. 25, 765–775 (1954).

    Google Scholar 

  • Gaffron, H.: Sauerstoff-Übertragung durch Chlorophyll und das photochemische Äquivalent-Gesetz. Chem. Ber. 60, 755–766 (1927).

    Google Scholar 

  • —: Über auffallende Unterschiede in der Physiologie nahe verwandter Algenstämme, nebst Bemerkungen über “Lichtatmung”. Biol. Zbl. 59, 302–313 (1939).

    Google Scholar 

  • —: Carbon dioxide reduction with molecular hydrogen in green algae. Amer. J. Bot. 27, 273–283 (1940).

    Google Scholar 

  • Gerhardt, B.: Untersuchungen über Beziehungen zwischen Ascorbinsäure und Photosynthese. Planta (Berl.) 61, 101–129 (1964).

    Google Scholar 

  • Govindjee, Govindjee, R.: Two different manifestations of enhancement in the photosynthesis of Porphyridium cruentum in flashing monochromatic light. Photochem. Photobiol. 4, 401–415 (1965).

    Google Scholar 

  • Kandler, O., Tanner, W.: Die Photoassimilation von Glukose als Indikator für die Lichtphosphorylierung in vivo. Ber. dtsch. Bot. Ges. 79, (Suppl.), 48–57 (1966).

    Google Scholar 

  • Nihei, T., Sasa, T., Miyachi, S., Suzuki, K., Tamiya, H.: Change of photosynthetic activity of Chlorella cells during the course of their normal life cycle. Arch. Mikrobiol. 21, 156–166 (1954).

    Google Scholar 

  • Pratt, L. H., Bishop, N. I.: The 520-nm light-induced absorbance change in photosynthetic mutants of Scenedesmus. Biochim. biophys. Acta (Amst.) 162, 369–379 (1968).

    Google Scholar 

  • Rabinowitch, E. I.: Photosynthesis, Bd. I, 599 pp. New York: Interscience Publ. 1945.

    Google Scholar 

  • Rabinowitch, E. I., Szalay, L., Das, M., Murty, N. R., Cederstrand, C. N., Govindjee: Spectral properties of cell suspension. In: Energy conversion by the photosynthetic apparatus, p. 1–7, Brookhaven Symp. Biol. 19 (1966).

  • Rieke, F. F.: Quantum efficiencies for photosynthesis and photoreduction in green plants. In: Photosynthesis in plants, p. 251–272 (ed. J. Franck and W. E. Loomis). Ames: Iowa: The Iowa State College Press 1949.

    Google Scholar 

  • Rubinstein, D.: Photoinduced absorption changes at 520 nm in Chlorella and their relationship to the two-pigment system of photosynthesis. Biochem. biophys. Acta (Amst.) 109, 41–44 (1965).

    Google Scholar 

  • Senger, H.: Charakterisierung einer Synchronkultur von Scenedesmus obliquus, ihrer potentiellen Photosyntheseleistung und des Photosynthese-Quotienten während des Entwicklungscyclus. Planta (Berl.) 90, 243–266 (1970).

    Google Scholar 

  • —, Bishop, N. I.: Changes in the quantum yield and photoreduction during the synchronous life cycle of Scenedesmus obliquus. Nature (Lond.) 214, 140–142 (1967).

    Google Scholar 

  • Senger, H., Bishop, N. I.: Changes in the photosynthetic apparatus during the synchronous life cycle of Scenedesmus obliquus. In: Progress in photosynthesis research (ed. H. Metzner), vol. I. p. 425–434. Tübingen 1969a.

  • —: Emerson enhancement effect in synchronous Scenedesmus cultures. Nature (Lond.) 22, 975 (1969b).

    Google Scholar 

  • Simonis, W.: Zyklische und nichtzyklische Photophosphorylierung in vivo. Ber. Dtsch. Bot. Ges. 80, 395–402 (1967).

    Google Scholar 

  • Sorokin, C.: Changes in the photosynthetic activity in the course of cell development in Chlorella. Physiol. Plant. 10, 659–666 (1957).

    Google Scholar 

  • Sorokin, C.: On the variability in the activity of the photosynthetic mechanism. In: Photosynthetic mechanism in green plants. Nat. Acad. Sci. Publ. 1145, 742–750 (1963).

  • —, Krauss, R. W.: Relative efficiency of photosynthesis in the course of cell development. Biochim. biophys. Acta (Amst.) 48, 314–319 (1961).

    Google Scholar 

  • Tanner, W., Loos, E., Klob, W., Kandler, O.: The quantum requirement for light dependent anaerobic glucose assimilation by Chlorella vulgaris. Z. Pflanzenphysiol. 59, 301–303 (1968).

    Google Scholar 

  • Trebst, A.: Neuere Vorstellungen über den Mechanismus der Photosynthese. Ber. dtsch. bot. Ges. 77, 123–142 (1964).

    Google Scholar 

  • Warburg, O.: Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. Biochem. Z. 100, 230–270 (1919).

    Google Scholar 

  • —, Schocken, V.: A manometric actionometer for the visible spectrum. Arch. Biochem. 21, 363–369 (1949).

    Google Scholar 

  • —, Krippahl, G.: Messung der Lichtabsorption in Chlorella mit der Ulbrichtschen Kugel. Z. Naturforsch. 9b, 181–182 (1954).

    Google Scholar 

  • Wiessner, W.: Relative quantum yields for anaerobic photoassimilation of glucose. Nature (Lond.) 212, 403–404 (1966).

    Google Scholar 

  • Witt, H. T., Rumberg, B., Junge, W.: Electron transfer, field changes, protontranslocation and phosphorylation in photosynthesis. In: Biochemie des Sauerstoffs (Hrsg. B. Hess und Hj. Staudinger), 19. Mosbach-Colloquium. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zweiter, durch einige Versuche ergänzter, Teil einer Habilitationsschrift der Naturwissenschaftlichen Fakultät der Philipps-Universität Marburg. Auszüge dieser Arbeit wurden auf dem “International Congress of Photosynthesis Research” in Freudenstadt im Juni 1968 vorgetragen (Senger und Bishop, 1969a).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senger, H. Quantenausbeute und unterschiedliches Verhalten der beiden Photosysteme des Photosyntheseapparates während des Entwicklungsablaufes von Scenedesmus obliquus in Synchronkulturen. Planta 92, 327–346 (1970). https://doi.org/10.1007/BF00385099

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385099

Navigation