Skip to main content
Log in

Microtubule-associated protein 2 (MAP2)-immunoreactive neurons in the retina of Bufo marinus: colocalisation with tyrosine hydroxylase and serotonin in amacrine cells

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Neuron populations in the retina of the toad, Bufo marinus, were labelled with a monoclonal antibody raised against microtubule-associated protein 2 (MAP2). A subpopulation of cones, probably corresponding to the blue-sensitive small single cones, large diameter amacrine cells in the most proximal row of the inner nuclear layer and some large ganglion cells in the ganglion cell layer were labelled. Double labelling experiments were carried out to establish the colocalisation of MAP2 with known putative transmitter substances of the anuran amacrine cells. MAP2 was colocalised in a subpopulation of serotonin-immunoreactive and in all tyrosine hydroxylase-immunoreactive amacrine cells. The results indicate, that the MAP2 content in the neurons of the anuran retina can be correlated with other well-defined neurochemical and/or physiological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahnelt PK, Kolb H, Pflug R (1987) Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina. J Comp Neurol 255:18–34

    PubMed  Google Scholar 

  • Binder LI, Frankfurter A, Kim H, Caceres A, Payne MR, Rebhun LI (1984) Heterogeneity of microtubule-associated protein 2 during rat brain development. Proc Natl Acad Sci USA 81:5613–5617

    PubMed  Google Scholar 

  • De Camilli P, Miller PE, Navone F, Therkauf WE, Wallee RB (1984) Distribution of microtubule-associated protein 2 in the nervous system of rat studied by immunofluorescence. Neuroscience 11:817–846

    PubMed  Google Scholar 

  • De Monasterio FM, McCrane EP, Schein SJ (1981) Staining of blue-sensitive cones of the macaque retina by fluorescent dye. Science 213:1278–1281

    PubMed  Google Scholar 

  • De Monasterio FM, McCrane EP, Newlander JK, Schein SJ (1985) Density profile of blue-sensitive cones along the horizontal median of macaque retina. Invest Ophthalmol Vis Sci 26:289–302

    PubMed  Google Scholar 

  • Dräger UC, Edwards DL, Branstable CJ (1984) Antibodies against filamentous components in discrete cell types of the mouse retina. J Neurosci 4:2025–2042

    PubMed  Google Scholar 

  • Gábriel R, Straznicky C, Wye-Dvorak J (1992) GABA-like immunoreactive neurons in the retina of Bufo marinus: evidence for the presence of GABA-containing ganglion cells. Brain Res 271:175–179

    Article  Google Scholar 

  • Garner CC, Brugg B, Matus A (1988) A 70 kD microtube associated protein (MAP2c) related to MAP2. J Neurochem 50:609–615

    PubMed  Google Scholar 

  • Hailman JP (1976) Oil droplets in the eyes of adult amphibians: a comparative survey. J Morphol 148:453–468

    PubMed  Google Scholar 

  • Herzog W, Weber K (1978) Fractionation of brain microtubule-associated proteins. Eur J Biochem 92:1–8

    PubMed  Google Scholar 

  • Hirokawa N, Nisanaga S, Shiomura Y (1988) MAP2 is a component of crossbridges between microtubules and neurofilaments in the neural cytoskeleton. J Neurosci 8:2769–2779

    PubMed  Google Scholar 

  • Hiscock J, Straznicky C (1989a) Morphological characterization of substance P immunoreactive amacrine cells in the anuran retina. Vision Res 29:293–301

    Article  PubMed  Google Scholar 

  • Hiscock J, Straznicky C (1989b) Neuropeptide Y-like immunoreactive amacrine cells in the retina of Bufo marinus. Brain Res 500:55–64

    Article  PubMed  Google Scholar 

  • Huber G, Matus A (1984) Difference in the cellular distribution of two microtubule-associated proteins MAP1 and MAP2 in rat brain. J Neurosci 4:151–160

    PubMed  Google Scholar 

  • Jagger WS (1988) Visibility of photoreceptors in the intact living cane toads eye. Vision Res 25:729–731

    Article  Google Scholar 

  • Kim H, Binder LI, Rosenbaum JL (1979) The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol 80:266–276

    Article  PubMed  Google Scholar 

  • Kinney MS, Fisher SK (1978) The photoreceptors and pigment epithelium of the adult Xenopus retina: morphology and outer segment renewal. Proc R Soc Lond [Biol] 201:131–147

    Google Scholar 

  • Kleinschmidt J, Yazulla S (1984) Uptake of 3H-glycine in the outer plexiform layer of the retina of the toad, Bufo marinus. J Comp Neurol 230:352–360

    PubMed  Google Scholar 

  • Lam DM-K, Li H-B, Su TY-Y, Watt CB (1985) The signature hypothesis: co-localization of neuroactive substances as anatomical probes for circuitry analysis. Vision Res 25:1353–1364

    Article  PubMed  Google Scholar 

  • Maccarone C, Jarrott B (1985) Differences in regional brain concentrations of neuropeptide Y in spontaneously hypertensive (SH) and Wistar-Kyoto (WKY) rats. Brain Res 345:165–169

    PubMed  Google Scholar 

  • Massey SC, Redburn DA (1987) Transmitter circuits in the vertebrate retina. Prog Neurobiol 28:55–96

    Article  PubMed  Google Scholar 

  • Maturana HR, Lettvin JY, McCullock WS, Pitts WH (1960) Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43:129–175

    Article  Google Scholar 

  • Matus A (1988) Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu Rev Neurosci 11:29–44

    Article  PubMed  Google Scholar 

  • Morris JL, Gibbins IL, Campbell G, Murphy R, Furness JB, Costa M (1986) Innervation of the large arteries and heart of the toad (Bufo marinus) by adrenergic and peptide-containing neurons. Cell Tissue Res 243:171–184

    PubMed  Google Scholar 

  • Okabe S, Shiomura Y, Hirokawa N (1989) Immunocytochemical localization of microtubule-associated proteins 1A and 2 in the rat retina. Brain Res 483:335–346

    Article  PubMed  Google Scholar 

  • Osborne NN, Nicholas DA, Dockray GJ, Cuello AC (1982) Cholecystokinin and substance P immunoreactivity in retinas of rats, frogs, lizards and chicks. Exp Eye Res 34:639–649

    Article  PubMed  Google Scholar 

  • Pasteels B, Parmentier M, Lawson EM, Vestappen A, Pochet R (1987) Calcium binding protein immunoreactivity in pigeon retina. Invest Ophthalmol Vis Sci 28:658–664

    PubMed  Google Scholar 

  • Pasteels B, Rogers J, Blachier F, Pochet R (1990) Calbindin and calretinin localization in retina from different species. Vis Neurosci 5:1–16

    PubMed  Google Scholar 

  • Röhlich P, Szél A, Papermaster DS (1989) Immunocytochemical reactivity of Xenopus laevis retinal rods and cones with several monoclonal antibodies to visual pigments. J Comp Neurol 290:105–117

    PubMed  Google Scholar 

  • Röhrenbeck J, Wässle H, Boycott BB (1989) Horizontal cells in the monkey retina: immunocytochemical staining with antibodies against calcium binding proteins. Eur J Neurosci 1:407–420

    PubMed  Google Scholar 

  • Saxén L (1954) The development of the visual cells. Embryological and physiological investigations on Amphibia. Ann Acad Sci Fenn [A] 23:1–107

    Google Scholar 

  • Spencer R, Charman M, Amtage JS, Lawson DEM (1976) Production and properties of vitamin D-induced mRNA for chick calcium binding protein. Eur J Biochem 71:399–409

    PubMed  Google Scholar 

  • Stirling VR, Merill EG (1987) Functional morphology of frog retinal ganglion cells and their central projections: the dimming detectors. J Comp Neurol 258:477–495

    PubMed  Google Scholar 

  • Straznicky C, Tóth P, Nguyen V-S (1990) Morphological classification and retinal distribution of large ganglion cells in the retina of Bufo marinus. Exp Brain Res 79:3435–3456

    Google Scholar 

  • Szél A, Röhlich P (1988) Four photoreceptor types in the ground squirrel retina as evidenced by immunocytochemistry. Vision Res 28:1297–1302

    Article  PubMed  Google Scholar 

  • Szél A, Diamanstein T, Röhlich P (1988) Identification of the bluesensitive cones in the mammalian retina by anti visual pigment antibody. J Comp Neurol 273:593–602

    PubMed  Google Scholar 

  • Tucker RP, Matus AI (1987) Developmental regulation of two microtubule-associated proteins (MAP2 and MAP5) in the embryonic avian retina. Development 101:535–546

    PubMed  Google Scholar 

  • Tucker RP, Binder LI, Matus AI (1988) Differential localization of the high and low-molecular weight variants of MAP2 in the developing retina. Brain Res 466:313–318

    Article  PubMed  Google Scholar 

  • Viereck C, Tucker RP, Binder LI, Matus A (1988) Phylogenetic conservation of brain microtubule-associated proteins MAP2 and tau. Neuroscience 26:893–904

    Article  PubMed  Google Scholar 

  • Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol Rev 71:447–480

    PubMed  Google Scholar 

  • Witkovsky P, Levine JS, Engbertson GA, Hassin G, MacNichol EF (1981a) A microspectrophotometric study of normal and artificial visual pigments in the photoreceptors of Xenopus laevis. Vision Res 21:867–873

    Article  PubMed  Google Scholar 

  • Witkovsky P, Yang CY, Ripps H (1981b) Properties of a bluesensitive rod in the Xenopus retina. Vision Res 21:875–883

    Article  PubMed  Google Scholar 

  • Zhang Y, Straznicky C (1991) The morphology and distribution of photoreceptors in the retina of Bufo marinus. Anat Embryol 183:537–544

    Article  PubMed  Google Scholar 

  • Zhu B-S, Straznicky C (1990a) Dendritic morphology and retinal distribution of tyrosine hydroxylase-like immunoreactive amacrine cells in Bufo marinus. Anat Embryol 181:365–371

    PubMed  Google Scholar 

  • Zhu B-S, Straznicky C (1990b) Morphology and distribution of serotonin-like immunoreactive amacrine cells in the retina of Bufo marinus. Vis Neurosci 5:371–378

    PubMed  Google Scholar 

  • Zhu B-S, Hiscock J, Straznicky C (1990) The changing distribution of neurons in the inner nuclear layer from metamorphosis to adult: a morphometric analysis of the anuran retina. Anat Embryol 181:583–594

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Department of Zoology, Attlia József University, Szeged, Hungary

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gábriel, R., Wilhelm, M. & Straznicky, C. Microtubule-associated protein 2 (MAP2)-immunoreactive neurons in the retina of Bufo marinus: colocalisation with tyrosine hydroxylase and serotonin in amacrine cells. Cell Tissue Res 269, 175–182 (1992). https://doi.org/10.1007/BF00384738

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384738

Key words

Navigation