Skip to main content
Log in

Ontogeny of substance P-, CGRP-, and VIP-containing nerve fibers in the amphibian carotid labyrinth of the bullfrog, Rana catesbeiana

An immunohistochemical study

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The ontogeny of substance P, CGRP (calcitonin gene-related peptide), and VIP (vasoactive intestinal polypeptide) containing nerve fibers in the carotid labyrinth of the bullfrog, Rana catesbeiana, was examined by the peroxidase-antiperoxidase method. The time of appearance of these three peptides was different for each. First, CGRP fibers appeared in the wall of the carotid arch and external carotid arteries, and in a thin septum between these two arteries at an early stage of larval development (stage III). At stage V, substance P immunoreactive fibers appeared, and VIP fibers were detected at the early metamorphic stage (stage XXII). Up to the completion of metamorphosis, the number of these fibers remained low. From 1 to 5 weeks after metamorphosis, substance P, CGRP, and VIP fibers increased in number to varying degrees. By 8 weeks after metamorphosis, the distribution and abundance of these fibers closely resembled those of the adults. Some CGRP and VIP immunoreactive glomus cells were found at the stages immediately before and after the completion of metamorphosis. These findings suggest that substance P, CGRP, and VIP fibers during larval development and metamorphosis may be nonfunctional, and start to participate in vascular regulation only after metamorphosis. The transient CGRP and VIP in some glomus cells may be important for the development of the labyrinth, or may take part in vascular regulation through the close apposition of the glomus and smooth muscle cells (g-s connection).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams WE (1958) The comparative morphology of the carotid body and carotid sinus. Thomas, Springfield, Illinois, pp 202–214

    Google Scholar 

  • Brain SD, Williams TJ, Tippins JR, Moris HR, MacIntyre I (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54–56

    PubMed  Google Scholar 

  • Buijs RM, Velis DN, Swaab DF (1980) Ontogeny of vasopressin and oxytocin in the fetal rat: early vasopressinergic innervation of the fetal brain. Peptides 1:315–324

    Article  PubMed  Google Scholar 

  • Carman JB (1955) The carotid labyrinth in the Hyla aurea, with a note on that in Leiopelma hochstettri. J Anat 89:503–525

    PubMed  Google Scholar 

  • Carman JB (1967a) The carotid labyrinth in the anuran Breviceps mossambicus. Trans R Soc New Zeal Zool 10:1–15

    Google Scholar 

  • Carman JB (1967b) The morphology of the carotid labyrinth in Bufo bufo and Leiopelma hochstetteri. Trans R Soc New Zeal Zool 10:71–76

    Google Scholar 

  • Cho HJ, Shiotani Y, Shiosaka S, Inagaki S, Kubota T, Kiyama H, Umegaki K, Tateishi K, Hashimura E, Hamaoka T, Tohyama M (1983) Ontogeny of cholecystokinin-8-containing neuron system of the rat: an immunohistochemical analysis. I. Forebrain and upper brain stem. J Comp Neurol 218:25–41

    PubMed  Google Scholar 

  • Edvinsson L, Uddman R (1982) Immunohistochemical localization and dilatory effects of substance P on human cerebral vessels. Brain Res 232:466–471

    Article  Google Scholar 

  • Emson PC, Girbert RFT, Loren I, Fahrenkrug J, Sundler F, Schaffalitzky de Muckadell OB (1979) Development of vasoactive intestinal polypeptide (VIP) containing neurons in the rat brain. Brain Res 177:437–444

    Article  PubMed  Google Scholar 

  • Hara Y, Shiosaka S, Senba E, Sakanaka M, Inagaki S, Takagi, Kawai Y, Takatsuki K, Matsuzaki T, Tohyama M (1982) Ontogeny of the neurotensin-containing neuron system of the rat: Diencephalon. J Comp Neurol 208:177–195

    PubMed  Google Scholar 

  • Heistad DD, Marcus MI, Said SI, Gross PM (1980) Effect of acetylcholine and vasoactive intestinal peptide on cerebral blood flow. Am J Physiol 238:H73-H80

    PubMed  Google Scholar 

  • Ishida S (1954) So-called carotic body of the Amphibia. Igaku Kenkyu (Fukuoka) 24:1024–1050

    Google Scholar 

  • Ishii K, Ishii K (1973) Fiber composition and derivation of afferent and efferent nerve fibers in the carotid nerve innervating the carotid labyrinth of the toad. Tohoku J Exp Med 109:323–337

    PubMed  Google Scholar 

  • Ishii K, Kusakabe T (1982) The glomus cell of the carotid labyrinth of Xenopus laevis. Cell Tissue Res 224:459–463

    Article  PubMed  Google Scholar 

  • Ishii K, Oosaki T (1969) Fine structure of the chemoreceptor cell in the amphibian carotid labyrinth. J Anat 104:263–280

    PubMed  Google Scholar 

  • Ishii K, Honda K, Ishii K (1966) The function of the carotid labyrinth in the toad. Tohoku J Exp Med 88:103–116

    PubMed  Google Scholar 

  • Kameda Y (1990) Ontogeny of the carotid body and glomus cells distributed in the wall of the common carotid artery and its branches in the chicken. Cell Tissue Res 261:525–537

    Article  PubMed  Google Scholar 

  • Khachaturin HK, Sladek JR Jr (1980) Simultaneous monoamine histofluorescence and neuropeptide immunohistochemistry: III. Ontogeny of catecholamine varicosities and neurophysin neurons in the rat supraoptic and paraventricular nuclei. Peptides 1:77–95

    Article  PubMed  Google Scholar 

  • Kobayashi S (1971) Comparative cytological studies of the carotid body. 2. Ultrastructure of the synapse on the chief cell. Arch Histol Jpn 33: 397–420

    PubMed  Google Scholar 

  • Kobayashi S, Murakami T (1975) Scanning electron microscopic observation of the fine three-dimensional distribution of the blood vessels in the frog carotid labyrinth. In: Purves MJ (ed) The peripheral chemoreceptors. Cambridge University Press, Cambridge, pp 301–313

    Google Scholar 

  • Kondo H, Yamamoto M (1988) Occurrence, ontogeny, ultrastructure and some plasticity of CGRP (calcitonin gene-related peptide)-immunoreactive nerves in the carotid body of rats. Brain Res 473:283–293

    Article  PubMed  Google Scholar 

  • Kusakabe T (1990a) Comparative studies on the vascular organization of carotid labyrinths of anurans and caudates. J Morphol 204:47–55

    PubMed  Google Scholar 

  • Kusakabe T (1990b) Ultrastructural studies of the carotid labyrinth in the newt Cynops pyrrhogaster. Zool Sci 7:201–208

    Google Scholar 

  • Kusakabe T (1991a) The occurrence of melanosomes in the newt glomus cell. Arch Histol Cytol 54:81–87

    PubMed  Google Scholar 

  • Kusakabe T (1991b) Morphogenesis of the carotid labyrinth of the bullfrog, Rana catesbeiana, during larval development and metamorphosis. Anat Embryol 184:133–139

    PubMed  Google Scholar 

  • Kusakabe T (1992a) Intimate apposition of the glomus and smooth muscle cells (g-s connection) in the carotid labyrinth of juvenile bullfrogs. Anat Embryol 185:39–44

    PubMed  Google Scholar 

  • Kusakabe T (1992b) Ultrastructural characteristics of glomus cells in the external carotid artery during larval development and metamorphosis in bullfrogs, Rana catesbeiana. Anat Rec (in press)

  • Kusakabe T, Ishii K, Ishii K (1987) A possible role of the glomus cell in controlling vascular tone of the carotid labyrinth of Xenopus laevis. Tohoku J Exp Med 151:395–408

    PubMed  Google Scholar 

  • Kusakabe T, Anglade P, Tsuji S (1991) Localization of substance P, CGRP, VIP, and somatostatin immunoreactive nerve fibers in the carotid labyrinths of some amphibian species. Histochemistry 96:255–260

    Article  PubMed  Google Scholar 

  • McGregor GP, Woodhams PL, O'shaughnessy DJ, Ghatei MA, Polak JM, Bloom SR (1982) Developmental changes in bombesin, substance P, somatostatin and vasoactive intestinal polypeptide in the rat brain. Neurosci Lett 28:21–27

    Article  PubMed  Google Scholar 

  • Noguchi R, Kobayashi S (1977) On the vascular architecture of the carotid labyrinth in Cynops pyrrhogaster and Onychodactylus japonicus. Arch Histol Jpn 40:347–360

    PubMed  Google Scholar 

  • Palmer MR, Miller RJ, Olson L, Seiger A (1982) Prenatal ontogeny of neurons with enkephalin-like immunoreactivity in the rat central nervous system: an immunohistochemical mapping investigation. Med Biol 60:61–88

    PubMed  Google Scholar 

  • Pickel VM, Sumal KK, Reis DJ, Miller RJ, Hervonen A (1980) Immunohistochemical localization of enkephalin and substance P in the dorsal tegmental nuclei in human fetal brain. J Comp Neurol 193:805–814

    PubMed  Google Scholar 

  • Poullet-Krieger M (1973) Innervation du labyrinthe carotidien du crapaud Bufo bufo: étude ultrastructurale et histochimique. J Microscopie 18:55–64

    Google Scholar 

  • Rogers DC (1963) Distinct cell types in the carotid labyrinth. Nature 200:492–493

    Google Scholar 

  • Samnegård H, Thulin L, Tydén G, Johansson C, Muhrberg O, Bjorklund C (1978) Effect of synthetic substance P on internal carotid artery blood flow in man. Acta Physiol Scand 104:492–495

    Google Scholar 

  • Scheibner T, Read DJC, Sullivan CE (1988) Distribution of substance P-immunoreactive structures in the developing cat carotid body. Brain Res 453:72–78

    Article  PubMed  Google Scholar 

  • Senba E, Shiosaka S, Hara Y, Inagaki S, Sakanaka M, Takatsuki K, Kawai Y, Tohyama M (1982) Ontogeny of the peptidergic system in the rat spinal cord: Immunohistochemical analysis. J Comp Neurol 208:54–66

    PubMed  Google Scholar 

  • Shiosaka S, Takatsuki K, Sakanaka M, Inagaki S, Takagi H, Senba E, Kawai Y, Tohyama M (1981) Ontogeny of somatostatin-containing neuron system of the rat: immunohistochemical observations. I. Lower brainstem. J Comp Neurol 203:173–188

    PubMed  Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Taylor AC, Kollros JJ (1946) Stages in the normal development of Rana pipiens larvae. Anat Rec 94:7–23

    Google Scholar 

  • Toews D, Shelton G, Boutilier R (1982) The amphibian carotid labyrinth: some anatomical and physiological relationships. Can J Zool 60:1153–1160

    Google Scholar 

  • Wilson DA, O'Neill JT, Saido SI, Traystman RJ (1981) Vasoactive intestinal polypeptide and canine cerebral circulation. Circ Res 48:138–148

    PubMed  Google Scholar 

  • Yamano M, Inagaki S, Tateishi N, Hamaoka T, Tohyama M (1984) Ontogeny of neuropeptides in the nucleus ventromedialis. Dev Brain Res 16:253–262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusakabe, T. Ontogeny of substance P-, CGRP-, and VIP-containing nerve fibers in the amphibian carotid labyrinth of the bullfrog, Rana catesbeiana . Cell Tissue Res 269, 79–85 (1992). https://doi.org/10.1007/BF00384728

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384728

Key words

Navigation