Skip to main content
Log in

BIE fracture mechanics analysis: 25 years of developments

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Summary

The past twenty five years have shown in many ways that the BIE formulation and its BEM implementation provide important contributions in two and three dimensional fracture mechanics analysis. The Somigliana stress identity plays a key role in these many investigations and applications. The experiences show that the BIE has unique capabilities to provide analytical insights and special results for fracture mechanics problems that are not found in the finite element methods.

The success of the BIE formalism for these problems is directly derived from the fact that the BIE is a complete representation of the equilibrium equations, even in its numerical form (BEM). This experience suggests that further attempts to couple the analytical and numerical behavior of BIE's could be equally beneficial to other problem areas in mechanics.

Most recent work on fracture analysis has focused on the nature of the hypersingular form of the Somigliana stress identity. It is expected that the non-singular forms of this identity will be the basis of new work on Green's functions, focusing on the three dimensional problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliabadi, M. H.; Rooke, D. P.; Cartwright, D. J. 1987: An improved boundary element formulation for calculating stress intensity factors: application to aerospace structures, J. Strain Anal. 22: 203–207

    Google Scholar 

  • Ang, W. T. 1986: A boundary integral solution for the problem of multiple interacting cracks in an elastic media, Int. J. Frac., 31: 259–270

    Google Scholar 

  • Annigeri, B. S.; Cleary, M. P. 1984: Surface integral finite element hybrid method for fracture mechanics, Intl. J. Numer. Methods Engrg., 20: 869–885

    Google Scholar 

  • Ayres, D. J. 1970: A numerical procedure for calculating stress and deformation near a slit in a three dimensional elastic plastic solid, Engrg. Fract. Mechs., 2: 87–106

    Article  Google Scholar 

  • Barsoum, R. S. 1976: On the use of isoparametric finite elements in linear fracture mechanics, Int. J. Numer. Math. Engrg., 10: 25–37

    Google Scholar 

  • Bentham, J. P. 1977: State of stress at the vertex of a quarter-infinite crack in a half space, Int. J. Solids Struct., 13: 479–492

    Article  Google Scholar 

  • Blandford, G. E.; Ingraffea, A. R.; Liggett, J. A. 1981: Two dimensional stress intensity factor computations using the boundary element method, Int. J. Numer. Meth. Engrg., 17: 387–404

    Google Scholar 

  • Bui, H. D. 1977: An integral equations method for solving the problem of a plane crack or arbitrary shape, J. Mechs. Phys. Sol., 25: 29–39

    Article  Google Scholar 

  • Bui, H. D. 1978: Some remarks about the formulation of three-dimensional thermoelastoplastic problems by integral equations, Int. J. Solids Struct., 14: 935–939

    Article  Google Scholar 

  • Grouch, S. L. 1976: Solution of plane elasticity problems by the displacement discontinuity method, Int. J. Numer. Meth. Engrg., 10: 301–343

    Google Scholar 

  • Crouch, S. L.; Starfield, A. M. 1983: Boundary Element Methods in Solid Mechanics, George Allen & Unwin, London

    Google Scholar 

  • Cruse, T. A. 1969: Numerical solutions in three-dimensional elastostatics, Intl. J. Solids Struct., 5: 1259–1274

    Article  Google Scholar 

  • Cruse, T. A. 1970: Lateral constraint in a cracked, three-dimensional elastic body, Int. J. Frac. Mechs. 6: 326–328

    Google Scholar 

  • Cruse, T. A.; VanBuren, W. 1971: Three dimensional elastic stress analysis of a fracture specimen with an edge crack, Intl. J. of Fract. Mechs., 7: 1, 1–15

    Google Scholar 

  • Cruse, T. A. 1972: Numerical evaluation of elastic stress intensity factors by the boundary-integral equation method, in The Surface Crack: Physical Problems and Computational Solutions, ed. J. L. Swedlow, American Society of Mechanical Engineers, 153–170

  • Cruse, T. A. 1973: Application of the boundary-integral equation method to three dimensional stress analysis, Comp. & Struct., 3: 509–527

    Google Scholar 

  • Cruse, T. A. 1974: An improved boundary-integral equation method for three dimensional elastic stress analysis, Comp. & Struct., 4: 741–754

    Google Scholar 

  • Cruse, T. A. 1975: Boundary-integral equation method for three dimensional elastic fracture mechanics analysis, U.S. Air Force Report AFOSR-TR-75-0813, Accession No. ADA011660

  • Cruse, T. A.; Besuner, P. M., 1975: Residual life prediction for surface cracks in complex structural details, AIAA Journal of Aircraft, 12: 369–375

    Google Scholar 

  • Cruse, T. A.; Meyers, G. J., 1977: Three dimensional fracture mechanics analysis, ASCE Journal of the Structural Division, 103: 309–320

    Google Scholar 

  • Cruse, T. A.; Wilson, R. B. 1978a: Boundary-integral equation method for elastic fracture mechanics analysis, U.S. Air Force Report AFOSR-TR-78-0355, Accession No. ADA051992

  • Cruse, T. A.; Wilson, R. B., 1978b: Advanced applications of the boundary-integral equation method. Nuclear Engrg. Des., 46: 233–234

    Google Scholar 

  • Cruse, T. A. 1978: Two-dimensional BIE fracture mechanics analysis, Appl. Math. Modeling, 2: 287–293

    Article  Google Scholar 

  • Cruse, T. A.; Polch, E. Z. 1986a: Elastoplastic BIE analysis of cracked plates and related problems, Parts I and II, Int. J. Numer. Meth. Engrg., 23: Part I, 429–437, Part II, 439–452

    Google Scholar 

  • Cruse, T. A.; Polch, E. Z., 1986b. Application of an elastoplastic boundary-element method to some fracture mechanics problems, Engrg. Frac. Mechs., 23: 1085–1096

    Article  Google Scholar 

  • Cruse, T. A. 1987: Fracture mechanics, in Boundary Element Methods in Mechanics, ed. D.E. Beskos, Elsevier Science Publishers B.V., The Netherlands: pp. 333–365

    Google Scholar 

  • Cruse, T. A. 1988a: Boundary Element Analysis in Computational Fracture Mechanics, Kluwer Academic Publishers, Amsterdam

    Google Scholar 

  • Cruse, T. A. 1988b: Three dimensional elastic surface cracks, in Fracture mechanics: Nineteenth Symposium, ASTM STP 969, ed. by T.A. Cruse, American Society for Testing and Materials, Philadelphia: 19–42

    Google Scholar 

  • Cruse, T. A.; Raveendra, S. T., 1988a: A general solution procedure for fracture mechanics weight function evaluation based on the boundary element method, Comp. Mechs., 3: 157–166

    Article  Google Scholar 

  • Cruse, T. A.; Raveendra, S. T. 1988b: A comparison of long and short crack elastoplastic response using the boundary element method, Engrg. Frac. Mechs., 30: 59–75

    Article  Google Scholar 

  • Cruse, T. A.; Novati, G. 1992: Traction BIE formulations and applications to nonplaner and multiple cracks, Fracture Mechanics: Twenty-Second Symposium (Vol. II), ASTM STP 1131, ed. S.N. Atluri et al., American Society for Testing and Materials, Philadelphia: 314–332

    Google Scholar 

  • Cruse, T. A.; Suwito, W. 1993: On the Somigliana stress identity in elasticity, Comp. Mechs., 11: 1–10

    Google Scholar 

  • Cruse, T. A.; Richardson, J. D. 1996: The non-singular Somigliana stress-BIE, Int. J. Numer. Meth. Engrg., in press

  • Eshelby, J. D.; Reed, W. T.; Shockley, W., 1957: Anisotropic elasticity with applications to dislocation theory, Acta Metal., 1: 251–259

    Article  Google Scholar 

  • Gangming, L.; Youngyuan, Z., 1988: Application of boundary element method with singular and isoparametric elements in three dimensional crack problems, Engrg. Frac. Mechs., 29: 97–106

    Google Scholar 

  • Green, A. E.; Sneddon, I. N., 1950: The stress distribution in the neighborhood of a flat elliptical crack in an elastic solid, Proc. Cambridge Phil. Soc., 46: 159–163

    Google Scholar 

  • Griffith, A. A. 1920: The phenomenon of rupture and flow in solids, Phil. Trans. R. Soc., A, 221: 163–198

    Google Scholar 

  • Guidera, J. T.; Lardner, R. W., 1975: Penny-shaped cracks, J. Elas., 5: 59–73

    Google Scholar 

  • Krishnasamy, G.; Rizzo, F. J.; Rudolphi, T. J., 1992: Continuity requirements for density functions in the boundary integral equation method, Comp. Mechs., 9: pp. 267–284

    Google Scholar 

  • Hack, J. E., Chan, K. S.; Cardinal, J. W., 1985: The prediction of the crack opening behavior of part-through fatigue cracks under the influence of surface residual stresses, Engrg. Fract. Mechs., 21: 75–83

    Google Scholar 

  • Heliot, J.; Labbens, R. C. 1979: Results for benchmark problem 1: the surface flaw, Int. J. Fract. 15: R197-R202

    Google Scholar 

  • Huang, Q.; Cruse, T. A. 1994: On the nonsingular traction-BIE in elasticity, Int. J. Numer. Meth. Engrg., 37: 2041–2072

    Google Scholar 

  • Inglis, C. E., 1913: Stresses in a plate due to the presence of cracks and sharp corners, Proceedings of the Institute of Naval Architects, 60: 219–230

    Google Scholar 

  • Irwin, G. R. 1957: Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mechs., 24: 361–364

    Google Scholar 

  • Kim, J.-W. 1985: A contour integral computation of stress intensity factors in the cracked orthotropic elastic plates, Engrg. Fract. Mechs., 21: 353–364

    Article  Google Scholar 

  • Lachat, J. C.; Watson, J. O. 1976: Effective numerical treatment of boundary integral equations: a formulation for three-dimensional elastoplastics, Int. J. Numer. Meth. Engrg., 10: 991–1005

    Google Scholar 

  • Li, R.; Chudnovsky, A. 1994: The stress intensity factor Green's function for a crack interacting with a circular inclusion, Int. J. Fract., 67: 169–177

    Google Scholar 

  • Martin, P. A. 1982: The discontinuity in the elastostatic displacement vector across a penny-shaped crack under arbitrary loads, J. Elas., 12: 201–218

    Google Scholar 

  • Melnikov, Yu. A. 1995: Green's Functions in Applied Mechanics, Computational Mechanics Publications, Southampton UK

    Google Scholar 

  • Mukherjee, S., 1982: Boundary Element Methods in Creep and Fracture, Applied Science, Essex UK

    Google Scholar 

  • Polch, E. Z.; Cruse, T. A.; Huang, C.-J. 1987: Traction BIE solutions forflat cracks, Comp. Mechs., 2: 253–267

    Article  Google Scholar 

  • Putot, C. J., 1980: Une nouvelle methode d'equations integrales pour certains problems de fissures planes, Ph.D. Thesis, University Pierre et Marie Curie, Paris VI

    Google Scholar 

  • Raveendra, S. T.; Cruse, T. A. 1989: BEM analysis of problems of fracture mechanics, in Industrial Applications of Boundary Element Methods, ed. P. K. Banerjee; R. B. Wilson, Elsevier Applied Science, London, 186–204

    Google Scholar 

  • Raju, I. S.; Newman, Jr., J. C. 1977: Three dimensional finite element analysis of finite thickness fracture specimens, NASA Technical Note TN D-8414, Washington, D. C.

  • Rudolphi, T. J.; Koo, L. S. 1985: Boundary element solutions of multiple, interacting crack problems in plane elastic media, Engrg. Anal., 2: 211–216

    Article  Google Scholar 

  • Schmitz, H.; Volk, K.; Wendland, W. 1993: Three-dimensional singularities of elastic fields near vertices, Numer. Meth. P. Diff. Eqtns., 9: 323–337

    Google Scholar 

  • Sinclair, J. E.; Hirth, J. P. 1975: Two dimensional elastic Green function for a cracked anisotropic body, J. Phys. F Metal Phys., 5: 236–246

    Article  Google Scholar 

  • Snyder, M. D.; Cruse, T. A. 1975: Boundary-integral equation analysis of cracked anisotropic plates, Intl. J. of Fract. Mechs., 11: 2, 315–328

    Google Scholar 

  • Stern, M.; Becker, E. B.; Dunham, R. S. 1976: A contour integral computation of mixed-mode stress intensity factors, Int. J. Fract., 12: 359–368

    Google Scholar 

  • Swedlow, J. L.; Cruse, T. A. 1971: Formulation of the boundary integral equation for three-dimensional elasto-plastic flow, Int. J. Solids Struct., 7: 1673–1683

    Article  Google Scholar 

  • Tan, C. L.; Fenner, R. T. 1979: Elastic fracture mechanics analysis by the boundary integral equation method, Proc. R. Soc. Lond. A, 369: 243–260

    Google Scholar 

  • Tanaka, M.; Itoh, H. 1987: New crack elements for boundary element analysis of elastostatics considering arbitrary stress singularities, Appl. Math. Model., 11: 357–363

    Article  Google Scholar 

  • Telles, J. C. F. 1983: The Boundary Element Method Applied to Inelastic Problems, Vol. 1 in the series Lecture Notes in Engineering, ed. C. Brebbia and S. A. Orzag, Springer-Verlag, Berlin

    Google Scholar 

  • Tracey, D. M. 1971: Finite elements for determination of crack tip elastic stress intensity factors, Engrg. Fract. Mechs., 3: 255–265

    Article  Google Scholar 

  • Williams, M. L. 1952: Stress singularities resulting from various boundary conditions in angular corners of plates in extension, J. Appl. Mechs., 19: 526–528

    Google Scholar 

  • Weaver, J. 1977: Three dimensional crack analysis, Intl. J. Soc. Struct., 13: 321–330

    Article  Google Scholar 

  • Weeën, F. van der, 1983: Mixed mode fracture analysis of rectilinear anisotropic plates using singular boundary elements, Comp. & Struct., 17: 469–474

    Google Scholar 

  • Xanthis, L. S.; Bernal, M. J. M.; Atkinson, C. 1981: The treatment of singularities in the calculation of stress intensity factors using the boundary integral equation method, Comp. Meth. Appl. Mechs. Engrg., 26: 285–304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, 4 January 1996

Dedicated to the 10th anniversary of Computational Mechanics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruse, T.A. BIE fracture mechanics analysis: 25 years of developments. Computational Mechanics 18, 1–11 (1996). https://doi.org/10.1007/BF00384172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384172

Keywords

Navigation