Skip to main content
Log in

An enhanced scaled boundary finite element method for linear elastic fracture

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A blocked Hamiltonian Schur decomposition is herein proposed for the solution process of the scaled boundary finite element method (SBFEM), which is demonstrated to comprise a robust simulation tool for linear elastic fracture mechanics (LEFM) problems. By maintaining Hamiltonian symmetry, increased accuracy is achieved, resulting in higher rates of convergence and reduced computational toll, while the former need for adoption of a stabilizing parameter and, inevitably user supervision, is alleviated. The method is further enhanced via adoption of superconvergent patch recovery theory in the formulation of the stress intensity factors (SIFs). It is shown that in doing so, superconvergence, and in select cases ultraconvergence, is succeeded in the SIFs calculation. Based on these findings, a novel error estimator for the SIFs within the context of SBFEM is proposed. To investigate and assess the performance of SBFEM in the context of LEFM, the method is contrasted against the finite element method and the extended finite element method variants. The comparison, carried out in terms of computational toll and accuracy for a number of applications, reveals SBFEM as a highly performant method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

References

  1. Bathe, K.J.: Finite Element Procedures. Klaus-Jurgen Bathe, Boston (2006). (OCLC: 732251900)

    MATH  Google Scholar 

  2. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola (2000)

    MATH  Google Scholar 

  3. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals, 7th edn. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  4. Kuna, M.: Finite elements in fracture mechanics: theory—numerics—applications. No. 201 Solid mechanics and its applications, Springer, Dordrecht (2013) (OCLC: 858004580)

  5. Brebbia, C., Dominguez, J.: Boundary element methods for potential problems. Appl. Math. Modell. 1(7), 372 (1977). doi:10.1016/0307-904X(77)90046-4

    Article  MathSciNet  MATH  Google Scholar 

  6. Ventu, W.S.: Boundary Element Method in Geomechanics. No. 4 in Lecture Notes in Engineering. Springer, Berlin (1983)

    Google Scholar 

  7. Cundall, P.: A computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings of International Symposium on Rock Fracture, ISRM (Nancy (F), 1971), pp. 2–8

  8. Rao, B.N., Rahman, S.: An efficient meshless method for fracture analysis of cracks. Comput. Mech. 26(4), 398 (2000). doi:10.1007/s004660000189

    Article  MATH  Google Scholar 

  9. Nguyen, V.P., Kerfriden, P., Bordas, S.P.: Two- and three-dimensional isogeometric cohesive elements for composite delamination analysis. Compos. B Eng. 60, 193 (2014). doi:10.1016/j.compositesb.2013.12.018

    Article  Google Scholar 

  10. Hofacker, M., Miehe, C.: A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns: a phase field model of dynamic fracture. Int. J. Numer. Methods Eng. 93(3), 276 (2013). doi:10.1002/nme.4387

    Article  MATH  Google Scholar 

  11. Mos, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131 (1999). doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

    Article  MATH  Google Scholar 

  12. Sukumar, N., Chopp, D., Mos, N., Belytschko, T.: Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng. 190(46–47), 6183 (2001). doi:10.1016/S0045-7825(01)00215-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Gravouil, A., Mos, N., Belytschko, T.: Non-planar 3D crack growth by the extended finite element and level sets-Part II: level set update: non-planar 3D crack growth-part II. Int. J. Numer. Methods Eng. 53(11), 2569 (2002). doi:10.1002/nme.430

    Article  Google Scholar 

  14. Agathos, K., Chatzi, E., Bordas, S.P.: Stable 3D extended finite elements with higher order enrichment for accurate non planar fracture. Comput. Methods Appl. Mech. Eng. 306, 19 (2016). doi:10.1016/j.cma.2016.03.023

    Article  MathSciNet  Google Scholar 

  15. Gupta, V., Duarte, C., Babuka, I., Banerjee, U.: A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 266, 23 (2013). doi:10.1016/j.cma.2013.07.010

    Article  MathSciNet  MATH  Google Scholar 

  16. Agathos, K., Chatzi, E., Bordas, S.P.A., Talaslidis, D.: Stable 3D extended finite elements with higher order enrichment for accurate non planar fracture. Int. J. Numer. Methods Eng. 105(9), 643 (2016). doi:10.1002/nme.4982

    Article  Google Scholar 

  17. Mohammadi, S.: XFEM Fracture Analysis of Composites. Wiley, Chichester (2012)

    Book  Google Scholar 

  18. Silvester, P., Lowther, D., Carpenter, C., Wyatt, E.: Exterior finite elements for 2-dimensional field problems with open boundaries. Proc. Inst. Electr. Eng. 124(12), 1267 (1977)

    Article  Google Scholar 

  19. Dasgupta, G.: A finite element formulation for unbounded homogeneous continua. J. Appl. Mech. 49(1), 136 (1982). doi:10.1115/1.3161955

    Article  MATH  Google Scholar 

  20. Wolf, J.P., Song, C.: Consistent infinitesimal finite-element cell method: in-plane motion. Comput. Methods Appl. Mech. Eng. 123(1–4), 355 (1995). doi:10.1016/0045-7825(95)00781-U

    Article  Google Scholar 

  21. Wolf, J.P., Song, C.: Finite-Element Modelling of Unbounded Media. Wiley, Chichester (1996)

    MATH  Google Scholar 

  22. Wolf, J.P.: The Scaled Boundary Finite Element Method. Wiley, Chichester (2003)

    Google Scholar 

  23. Deeks, A.J., Wolf, J.P.: A virtual work derivation of the scaled boundary finite-element method for elastostatics. Comput. Mech. 28(6), 489 (2002). doi:10.1007/s00466-002-0314-2

    Article  MathSciNet  MATH  Google Scholar 

  24. Paige, C., Van Loan, C.: A Schur decomposition for Hamiltonian matrices. Linear Algebra Appl. 41, 11 (1981). doi:10.1016/0024-3795(81)90086-0

    Article  MathSciNet  MATH  Google Scholar 

  25. Chu, D., Liu, X., Mehrmann, V.: A numerical method for computing the Hamiltonian Schur form. Numer. Math. 105(3), 375 (2006). doi:10.1007/s00211-006-0043-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Mehrmann, V., Schrder, C., Watkins, D.: A new block method for computing the Hamiltonian Schur form. Linear Algebra Appl. 431(3–4), 350 (2009). doi:10.1016/j.laa.2009.01.026

    Article  MathSciNet  MATH  Google Scholar 

  27. Long, X., Jiang, C., Han, X., Gao, W., Bi, R.: Sensitivity analysis of the scaled boundary finite element method for elastostatics. Comput. Methods Appl. Mech. Eng. 276, 212 (2014). doi:10.1016/j.cma.2014.03.005

    Article  MathSciNet  Google Scholar 

  28. Song, C.: A matrix function solution for the scaled boundary finite-element equation in statics. Comput. Methods Appl. Mech. Eng. 193(23–26), 2325 (2004). doi:10.1016/j.cma.2004.01.017

    Article  MathSciNet  MATH  Google Scholar 

  29. Song, C.: Evaluation of power-logarithmic singularities, T-stresses and higher order terms of in-plane singular stress fields at cracks and multi-material corners. Eng. Fract. Mech. 72(10), 1498 (2005). doi:10.1016/j.engfracmech.2004.11.002

    Article  Google Scholar 

  30. Song, C., Tin-Loi, F., Gao, W.: A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges. Eng. Fract. Mech. 77(12), 2316 (2010). doi:10.1016/j.engfracmech.2010.04.032

    Article  Google Scholar 

  31. Yang, Z.: Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method. Eng. Fract. Mech. 73(12), 1711 (2006). doi:10.1016/j.engfracmech.2006.02.004

    Article  Google Scholar 

  32. Ooi, E., Shi, M., Song, C., Tin-Loi, F., Yang, Z.: Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique. Eng. Fract. Mech. 106, 1 (2013). doi:10.1016/j.engfracmech.2013.02.002

    Article  Google Scholar 

  33. Ooi, E.T., Song, C., Tin-Loi, F., Yang, Z.: Polygon scaled boundary finite elements for crack propagation modelling: scaled boundary polygon finite elements for crack propagation. Int. J. Numer. Methods Eng. 91(3), 319 (2012). doi:10.1002/nme.4284

    Article  MATH  Google Scholar 

  34. Deeks, A.J., Wolf, J.P.: Stress recovery and error estimation for the scaled boundary finite-element method. Int. J. Numer. Methods Eng. 54(4), 557 (2002). doi:10.1002/nme.439

    Article  MATH  Google Scholar 

  35. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery anda posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331 (1992). doi:10.1002/nme.1620330702

    Article  MATH  Google Scholar 

  36. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery anda posteriori error estimates. Part 2: error estimates and adaptivity. Int. J. Numer. Methods Eng. 33(7), 1365 (1992). doi:10.1002/nme.1620330703

    Article  MATH  Google Scholar 

  37. Yang, Z., Zhang, Z., Liu, G., Ooi, E.: An h-hierarchical adaptive scaled boundary finite element method for elastodynamics. Comput. Struct. 89(13–14), 1417 (2011). doi:10.1016/j.compstruc.2011.03.006

    Article  Google Scholar 

  38. Vu, T.H., Deeks, A.J.: A p-adaptive scaled boundary finite element method based on maximization of the error decrease rate. Comput. Mech. 41(3), 441 (2007). doi:10.1007/s00466-007-0203-9

    Article  MathSciNet  MATH  Google Scholar 

  39. Panetier, J., Ladevze, P., Louf, F.: Strict bounds for computed stress intensity factors. Comput. Struct. 87(15–16), 1015 (2009). doi:10.1016/j.compstruc.2008.11.014

    Article  Google Scholar 

  40. Gonzlez-Estrada, O., Rdenas, J., Bordas, S., Nadal, E., Kerfriden, P., Fuenmayor, F.: Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method. Comput. Struct. 152, 1 (2015). doi:10.1016/j.compstruc.2015.01.015

    Article  Google Scholar 

  41. Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for stress intensity factors. Int. J. Numer. Methods Eng. 72(10), 1219 (2007). doi:10.1002/nme.2090

    Article  MATH  Google Scholar 

  42. Natarajan, S., Song, C.: Representation of singular fields without asymptotic enrichment in the extended finite element method. Int. J. Numer. Methods Eng. 96(13), 813 (2013). doi:10.1002/nme.4557

    Article  MathSciNet  MATH  Google Scholar 

  43. Song, C.: The scaled boundary finite element method in structural dynamics. Int. J. Numer. Methods Eng. 77(8), 1139 (2009). doi:10.1002/nme.2454

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, Z.J., Deeks, A.J., Hao, H.: A Frobenius solution to the scaled boundary finite element equations in frequency domain for bounded media. Int. J. Numer. Methods Eng. 70(12), 1387 (2007). doi:10.1002/nme.1926

    Article  MathSciNet  MATH  Google Scholar 

  45. Man, H., Song, C., Xiang, T., Gao, W., Tin-Loi, F.: High-order plate bending analysis based on the scaled boundary finite element method. Int. J. Numer. Methods Eng. 95(4), 331 (2013). doi:10.1002/nme.4519

    Article  MathSciNet  MATH  Google Scholar 

  46. Ooi, E.T., Song, C., Tin-Loi, F.: A scaled boundary polygon formulation for elasto-plastic analyses. Comput. Methods Appl. Mech. Eng. 268, 905 (2014). doi:10.1016/j.cma.2013.10.021

    Article  MathSciNet  MATH  Google Scholar 

  47. Behnke, R., Mundil, M., Birk, C., Kaliske, M.: A physically and geometrically nonlinear scaled-boundary-based finite element formulation for fracture in elastomers. Int. J. Numer. Methods Eng. 99(13), 966 (2014). doi:10.1002/nme.4714

    Article  MathSciNet  MATH  Google Scholar 

  48. Lin, Z., Liao, S.: The scaled boundary FEM for nonlinear problems. Commun. Nonlinear Sci. Numer. Simul. 16(1), 63 (2011). doi:10.1016/j.cnsns.2010.03.005

    Article  MathSciNet  MATH  Google Scholar 

  49. Genes, M.C., Kocak, S.: Dynamic soil-structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model. Int. J. Numer. Methods Eng. 62(6), 798 (2005). doi:10.1002/nme.1212

    Article  MATH  Google Scholar 

  50. Bird, G., Trevelyan, J., Augarde, C.: A coupled BEM/scaled boundary FEM formulation for accurate computations in linear elastic fracture mechanics. Eng. Anal. Bound. Elem. 34(6), 599 (2010). doi:10.1016/j.enganabound.2010.01.007

    Article  MATH  Google Scholar 

  51. Deeks, A.J., Augarde, C.E.: A meshless local Petrov-Galerkin scaled boundary method. Comput. Mech. 36(3), 159 (2005). doi:10.1007/s00466-004-0649-y

    Article  MathSciNet  MATH  Google Scholar 

  52. Lin, G., Zhang, Y., Hu, Z., Zhong, H.: Scaled boundary isogeometric analysis for 2D elastostatics. Sci. China Phys. Mech. Astron. 57(2), 286 (2014). doi:10.1007/s11433-013-5146-x

    Article  Google Scholar 

  53. Khaji, N., Khodakarami, M.: A new semi-analytical method with diagonal coefficient matrices for potential problems. Eng. Anal. Bound. Elem. 35(6), 845 (2011). doi:10.1016/j.enganabound.2011.01.011

    Article  MathSciNet  MATH  Google Scholar 

  54. Augarde, C.: Scaled boundary methods: an introduction (2011). https://web.sbe.hw.ac.uk/acme2011/Handout_Scaled_boundary_methods_CA.pdf

  55. Li, C., Man, H., Song, C., Gao, W.: Analysis of cracks and notches in piezoelectric composites using scaled boundary finite element method. Compos. Struct. 101, 191 (2013). doi:10.1016/j.compstruct.2013.02.009

    Article  Google Scholar 

  56. Niconet e.V. Subroutine library in systems and control theory. slicot.org

  57. Fett, T.: Stress intensity factors for edge-cracked plates under arbitrary loading. Fatigue Fract. Eng. Mater. Struct. 22(4), 301 (1999). doi:10.1046/j.1460-2695.1999.00156.x

    Article  Google Scholar 

  58. Benner, P., Kressner, D.: New Hamiltonian Eigensolvers with Applications in Control, pp. 6551–6556. IEEE (2005). doi:10.1109/CDC.2005.1583213

  59. I. The MathWorks. eig: (2016). https://ch.mathworks.com/help/matlab/ref/eig.html

  60. Ewalds, H.L., Wanhill, R.J.H.: The elastic stress field approach. In: Arnold, E. (ed.) Fracture Mechanics. Delftse Uitgevers Maatschappij, London (1984)

Download references

Acknowledgements

This research was performed under the auspices of the Swiss National Science Foundation (SNSF), Grant \(\#\) 200021 153379, A Multiscale Hysteretic XFEM Scheme for the Analysis of Composite Structures. The authors extend their gratitude to Dr. Konstantinos Agathos, of the University of Luxembourg, for providing the MATLAB® source code of the XFEM implementation as well as Prof. Dr. Volker Mehrmann from TU Berlin and Prof. Dr. David Watkins, of Washington State University, for providing the Hamiltonian Schur algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni N. Chatzi.

Additional information

This research is supported by the Swiss National Science Foundation (SNSF) Research Grant, Project # 200021_153379.

Appendix A.1

Appendix A.1

Considering the term representing the internal virtual work first, it is rearranged after substituting Eqs. 9 and 11:

$$\begin{aligned}&\int _V \{\delta {{\varepsilon }}(\xi ,\eta )\}^T \{{{\sigma }}(\xi ,\eta )\} dV\nonumber \\&\quad =\int _V \left[ [{B^1}(\eta )]\{\delta {u}(\xi )\}_{,\xi } + \frac{1}{\xi }[{B^2}(\eta )]\{\delta {u}(\xi )\} \right] ^T\nonumber \\&\qquad \times [{D}] \left( [{B^1}(\eta )]\{{u}(\xi )\}_{,\xi } + \frac{1}{\xi }[{B^2}(\eta )]\{{u}(\xi )\} \right) dV\nonumber \\&\quad = \int _{\partial \Omega } \int _{\xi =0}^{\xi =1} \{\delta {u}(\xi )\}^T_{,\xi } [{B}^1(\eta )]^T [{D}] [{B}^1(\eta )] \xi \{{u}(\xi )\}_{,\xi } |{J}| d\xi d\eta \nonumber \\&\qquad + \int _{\partial \Omega } \int _{\xi =0}^{\xi =1} \{\delta {u}(\xi )\}^T_{,\xi } [{B}^1(\eta )]^T [{D}] [{B}^2(\eta )] \{{u}(\xi )\} |{J}| d\xi d\eta \nonumber \\&\qquad + \int _{\partial \Omega } \int _{\xi =0}^{\xi =1} \{\delta {u}(\xi )\}^T [{B}^2(\eta )]^T [{D}] [{B}^1(\eta )] \{{u}(\xi )\}_{,\xi } |{J}| d\xi d\eta \nonumber \\&\qquad + \int _{\partial \Omega } \int _{\xi =0}^{\xi =1} \{\delta {u}(\xi )\}^T [{B}^2(\eta )]^T [{D}] [{B}^2(\eta )] \frac{1}{\xi } \{{u}(\xi )\} |{J}| d\xi d\eta \end{aligned}$$
(67)

Green’s theorem leads to the following formulation:

$$\begin{aligned}&\int _V \{\delta {{\varepsilon }}(\xi ,\eta )\}^T \{{{\sigma }}(\xi ,\eta )\} dV\nonumber \\&\quad = \int _{\partial \Omega } \{\delta {u}(\xi )\}^T [{B}^1(\eta )]^T [{D}] [{B}^1(\eta )] \xi \{{u}(\xi )\}_{,\xi } |{J}| d \eta \Big |_{\xi =1}\nonumber \\&\qquad - \int _{\partial \Omega } \{\delta {u}(\xi )\}^T [{B}^1(\eta )]^T [{D}] [{B}^1(\eta )]\nonumber \\&\qquad \times \lbrace \{{u}(\xi )\}_{\xi } + \{{u}(\xi )\}_{\xi \xi } \rbrace |{J}| d\xi d\eta \nonumber \\&\qquad + \int _{\partial \Omega } \{\delta {u}(\xi )\}^T [{B}^1(\eta )]^T [{D}] [{B}^2(\eta )] \{{u}(\xi )\} |{J}| d \eta \Big |_{\xi =1}\nonumber \\&\qquad - \int _{\partial \Omega } \int _{\xi =0}^{\xi =1} \{\delta {u}(\xi )\}^T [{B}^1(\eta )]^T [{D}] [{B}^2(\eta )] \{{u}(\xi )\}_{,\xi } |{J}| d\xi d\eta \nonumber \\&\qquad + \int _{\partial \Omega } \int _{\xi =0}^{\xi =1} \{\delta {u}(\xi )\}^T [{B}^2(\eta )]^T [{D}] [{B}^1(\eta )] \{{u}(\xi )\}_{,\xi } |{J}| d\xi d\eta \nonumber \\&\qquad + \int _{\partial \Omega } \int _{\xi =0}^{\xi =1} \{\delta {u}(\xi )\}^T [{B}^2(\eta )]^T [{D}] [{B}^2(\eta )] \frac{1}{\xi } \{{u}(\xi )\} |{J}| d\xi d\eta \end{aligned}$$
(68)

In order to simplify the above equation, the following substitutions are introduced:

$$\begin{aligned}{}[E^0]= & {} \int _{\partial \Omega } [{B}^1(\eta )]^T [{D}] [{B}^1(\eta )] |{J}| d\eta \end{aligned}$$
(69a)
$$\begin{aligned} {[E^1]}= & {} \int _{\partial \Omega } [{B}^1(\eta )]^T [{D}] [{B}^2(\eta )] |{J}| d\eta \end{aligned}$$
(69b)
$$\begin{aligned} {[E^2]}= & {} \int _{\partial \Omega } [{B}^2(\eta )]^T [{D}] [{B}^2(\eta )] |{J}| d\eta \end{aligned}$$
(69c)

These simplifications are named “coefficient matrices” and resemble in structure the stiffness matrix of standard FEM schemes. They are calculated element-wise and then assembled in the standard FEM sense. Applying boundary conditions on the coefficient matrices is premature, as this will effectively delete parts of the domain corresponding to the space spanned by the DOFs on the boundary and the scaling center. Using the same notation to denote the fully assembled coefficient matrices, the previous equations are rewritten as follows using an abbreviation on the boundary \(\{{u}\} \hat{=} \{{u}(\xi =1)\}\):

$$\begin{aligned}&\int _V \{\delta {{\varepsilon }}(\xi ,\eta )\}^T \{{{\sigma }}(\xi ,\eta )\} dV\nonumber \\&\quad = \{\delta { u}\}^T \{ [{E^0}] \{{u}\}_{,\xi } + [{E^1}]^T \{{u}\} \}\nonumber \\&\qquad - \int _{xi = 0}^{\xi = 1} \{\delta {u}(\xi )\}^T \Big \{ [{E^0}] \xi \{{u}(\xi )\}_{,\xi \xi }\nonumber \\&\qquad + [[{E^0}] + [{E^1}]^T - [{E^1}]] \{{u}(\xi )\}_{,\xi } - [{E^2}] \frac{1}{\xi } \{{u}(\xi )\} \Big \} d \xi \end{aligned}$$
(70)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egger, A.W., Chatzi, E.N. & Triantafyllou, S.P. An enhanced scaled boundary finite element method for linear elastic fracture. Arch Appl Mech 87, 1667–1706 (2017). https://doi.org/10.1007/s00419-017-1280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1280-7

Keywords

Navigation