Skip to main content
Log in

The mechanism of hydrogen photoproduction by several algae

I. The effect of inhibitors of photophosphorylation

  • Published:
Planta Aims and scope Submit manuscript

Summary

In order to come to a more firmly based conclusion on the mechanism of hydrogen photoproduction in green algae, we have compared two additional genera of green algae, i.e., Ankistrodesmus and Chlorella, with the previously tested Chlamydomonas and Scenedesmus. None of the algae tested required photosystem II for H2 photoproduction, since this reaction still occurred in the presence of 10-5M DCMU. Photophosphorylation was also not required since two potent inhibitors of this process, Cl-CCP and SAL, almost always stimulated H2 photoproduction. However, the effect of the inhibitors was found to vary with the species of alga and also with the age and growth conditions of the culture. The highest concentration of SAL tested (10-2M) always stimulated H2 photoproduction by photoheterotrophically grown cells, but often inhibited this reaction in autotrophically grown cells. When present, this inhibition by SAL was associated with gross pigment damage. The variation in the effect of Cl-CCP upon H2 photoproduction due to different growth conditions was particularly striking for Chlorella vulgaris.

Cl-CCP gave very little if any stimulation of this reaction in autotrophically grown cells of this alga, but stimulated H2 photoproduction by photoheterotrophically grown cells approximately 450%. Chlamydomonas cells were found to be about ten times as sensitive as the other cells to both poisons. We conclude that all of the algae tested are able to photoproduce H2 via non-cyclic electron flow through photosystem I to hydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cl-CCP:

carbonyl cyanide, m-chlorophenylhydrazone

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

ICC:

Indiana Culture Collection

PS:

photosystem

SAL:

salicylaldoxime

References

  • Arnon, D. I.: Role of ferredoxin in photosynthesis. Naturwissenschaften 56, 295–305 (1969).

    Google Scholar 

  • Benemann, J. R., Valentine, R. C.: High-energy electrons in bacteria. In: Advances in microbial physiology, vol. 5, p. 135–172, A. H. Rose and J. F. Wilkinson, eds. New York: Acad. Press 1971.

    Google Scholar 

  • Budd, T. W., Tjostem, J. L., Duysen, M. E.: Ultrastructure of Chlorella pyrenoidosa as affected by environmental changes. Amer. J. Bot. 56, 540–545 (1969).

    Google Scholar 

  • Foo, S. K., Badour, S. S., Waygood, E. R.: Regulation of isocitrate lyase from autotrophic and photoheterotrophic cultures of Gloeomonas sp. Canad. J. Bot. 49, 1647–1653 (1971).

    Google Scholar 

  • Frenkel, A. W.: Multiplicity of electron transport reactions in bacterial photosynthesis. Biol. Rev. 45, 569–616 (1970).

    Google Scholar 

  • Frenkel, A. W., Lewin, R. A.: Photoreduction by Chlamydomonas. Amer. J. Bot. 41, 586–589 (1954).

    Google Scholar 

  • Gray, C. T., Gest, H.: Biological formation of molecular hydrogen. Science 148, 186–192 (1965).

    Google Scholar 

  • Guerrini, A. M., Cremona, T., Preddie, E. C.: The aldolases of Chlamydomonas reinhardii. Arch. Biochem. 146, 249–255 (1971).

    Google Scholar 

  • Hardy, R. W. F., Burns, R. C.: Biological nitrogen fixation. Ann. Rev. Biochem. 37, 331–358 (1968).

    Google Scholar 

  • Healey, F. P.: Hydrogen evolution by several algae. Planta (Berl.) 91, 220–226 (1970a).

    Google Scholar 

  • Healey, F. P.: The mechanism of hydrogen evolution by Chlamydomonas moewusii. Plant Physiol. 45, 153–159 (1970b).

    Google Scholar 

  • Kaltwasser, H., Stuart, T. S., Gaffron, H.: Light-dependent hydrogen evolution by Scenedesmus. Planta (Berl.) 89, 309–322 (1969).

    Google Scholar 

  • Kessler, E.: Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. III. Merkmale von 8 autotrophen Arten. Arch. Mikrobiol. 55, 346–357 (1967).

    Google Scholar 

  • Kessler, E., Czygan, F.-C.: Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. IV. Verwertung organischer Stickstoffverbindungen. Arch. Mikrobiol. 70, 211–216 (1970).

    Google Scholar 

  • Kessler, E., Zweier, I.: Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. V. Die auxotrophen und mesotrophen Arten. Arch. Mikrobiol. 79, 44–48 (1971).

    Google Scholar 

  • Kiewiet, D. Y., de, Hall, D. O., Jenner, E. L.: Effect of carbonylcyanide m-chlorophenylhydrazone on the photochemical reactions of isolated chloroplasts. Biochim. biophys. Acta (Amst.) 109, 284–292 (1965).

    Google Scholar 

  • Kimimura, M., Kathoh, S., Ikegami, I., Takamiya, A.: Inhibitory site of carbonyl cyanide m-chlorophenylhydrazone in the electron transfer system of the chloroplasts. Biochim. biophys. Acta (Amst.) 234, 92–102 (1971).

    Google Scholar 

  • Mackinney, G.: Absorption of light by chlorophyll solutions. J. biol. Chem. 140, 315–322 (1941).

    Google Scholar 

  • Peck, H. D., Jr.: Energy-coupling mechanisms in chemolithotrophic bacteria. Ann. Rev. Microbiol. 22, 489–518 (1968).

    Google Scholar 

  • Russell, G. K., Gibbs, M.: Regulation of photosynthetic capacity in Chlamydomonas mundana. Plant Physiol. 41, 885–890 (1966).

    Google Scholar 

  • Stuart, T. S.: Hydrogen production by photosystem I of Scenedesmus: Effect of heat and salicylaldoxime on electron transport and photophosphorylation. Planta (Berl.) 96, 81–92 (1971).

    Google Scholar 

  • Stuart, T. S., Gaffron, H.: The kinetics of hydrogen photoproduction by adapted Scenedesmus. Planta (Berl.) 100, 228–243 (1971).

    Google Scholar 

  • Stuart, T. S., Gaffron, H.: The gas exchange of hydrogen-adapted algae as followed by mass spectrometry. Plant Physiol., in press (1972).

  • Stuart, T. S., Gaffron, H.: The mechanism of hydrogen production by several algae. II. The contribution of photosystem II. Planta (Berl.) 106, 101 (1972).

    Google Scholar 

  • Stuart, T. S., Kaltwasser, H.: Photoproduction of hydrogen by photosystem I of Scenedesmus. Planta (Berl.) 91, 302–313 (1970).

    Google Scholar 

  • Tomova, N., Setchenska, M., Krusteva, N., Christova, Y., Dechev, G.: Activity of the key enzymes of glycolysis and pentosephosphate cycle of Chlorella with different carbon nutrition. C. R. de l'Académie bulgare des Sciences 24, 369–372 (1971).

    Google Scholar 

  • Wiessner, W.: Stoffwechselleistung und Enzymaktivität bei Chlamydobotrys (Volvocales). Arch. Mikrobiol. 45, 33–45 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These studies were supported by contract No. AT-(40-1)-2687 from the U. S. Atomic Energy Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuart, T.S., Gaffron, H. The mechanism of hydrogen photoproduction by several algae. Planta 106, 91–100 (1972). https://doi.org/10.1007/BF00383989

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00383989

Keywords

Navigation