Skip to main content
Log in

The Prandtl number effect in porous layer convection

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A Prandtl number effect for natural convection in a horizontal porous layer is demonstrated to be an explanation for the difference in heat transfer between different porous systems. A Prandtl number trend in experimental data is identified and arguments are presented to substantiate a Prandtl number dependence. Finally, Nusselt number correlations of experimental data at different Prandtl numbers have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c p :

specific heat

d :

particle diameter

Da:

Darcy number

ê i :

unit vector in i direction

g :

acceleration due to gravity

h c :

fluid-solid heat transfer coefficient

k :

thermal conductivity

k m :

effective thermal conductivity of porous media

KC:

Kozeny-Carman number

l :

spacing between particles

L :

height of layer

Nu:

Nusselt number

P :

pressure

Pr m :

porous media Prandtl number

Ra:

Rayleigh number

Re m :

porous media Reynolds number

T :

temperature

u :

velocity

U :

Darcian velocity

u, v, w :

components of velocity in the x, y, and z directions, respectively

U, V, W :

components of the Darcian velocity in the x, y, and z directions, respectively

x, y, z :

spatial coordinates

α m :

thermal diffusivity of porous media

β :

thermal expansion coefficient

ΔT :

applied temperature difference

Ε:

porosity

Λ:

dimensionless fluid-solid heat transfer coefficient

ν :

kinematic viscosity

ψ :

permeability

ϕ :

Kozeny coefficient

ρ :

density

f :

pertaining to the fluid

s :

pertaining to the solid

References

  1. Aziz K and Combarnous M (1970) Prédiction théorique du transfert de chaleur par convection dans une couche poreuse horizontale. Comptes Rendus Academie Science, ser B, vol 271, p 81

  2. Bear J (1972) Dynamics of Fluids in Porous Media. New York: Elsevier

    Google Scholar 

  3. Chu TY and Goldstein RJ (1973) Turbulent convection in a horizontal layer of water, J Fluid Mech 60:141

    Google Scholar 

  4. Combarnous M (1970) Convection naturelle et convection mixte en milieu poroux. Thesis, University of Paris

  5. Combarnous M and Bories S (1974) Modélisation de la convection naturelle au sein d'une couche poreuse horizontale à l'aide d'un coefficient de transfert solide-fluide. Int J Heat and Mass Transfer 17:505

    Google Scholar 

  6. Edwards DK, Denny VE and Mills AF (1973) Transfer Processes, 1st ed. New York: Holt, Rinehart and Winston

    Google Scholar 

  7. Elder JW (1967) Steady free convection in a porous medium heated from below. J Fluid Mech 27:29

    Google Scholar 

  8. Goldstein RJ and Chu TY (1971) Thermal convection in a horizontal layer of air. Progress in Heat and Mass Transfer 2:55

    Google Scholar 

  9. Horton CW and Rogers FT (1945) Convection currents in a porous medium. J Appl Phys 16:367

    Google Scholar 

  10. Irmay S (1958) On the theoretical derivation of Darcy and Forchheimer formulas. Transactions, American Geophysical Union 39(4):702–707

    Google Scholar 

  11. Lapwood ER (1948) Convection of a fluid in a porous medium. Proceedings of the Cambridge Philosophical Society 44:508

    Google Scholar 

  12. Palm E, Weber J and Kvernvold, O (1972) On steady convection in a porous medium. J Fluid Mech 54:153

    Google Scholar 

  13. Rossby HT (1966) An experimental study of Bénard convection with and without rotation. HRF/SR27, Dept of Geology and Geophysics, MIT

  14. Somerton CW, McDonough JM and Catton I (1982) Natural convection in porous media: a mixed finite difference — Galerkin solution with wavenumber prediction. VII International Heat Transfer Conference, Munich, September 1982

  15. Straus JM (1974) Large amplitude convection in porous media. J Fluid Mechanics 64:51

    Google Scholar 

  16. Vafai K and Tien CL (1981) Boundary and inertia effects on flow and heat transfer in porous media. Int J Heat and Mass Transfer 24:195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somerton, C.W. The Prandtl number effect in porous layer convection. Appl. Sci. Res. 40, 333–344 (1983). https://doi.org/10.1007/BF00383039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00383039

Keywords

Navigation