Skip to main content
Log in

Cytoarchitectonic pattern of the hypothalamus in the turtle, Lissemys punctata granosa

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

In the hypothalamus of the turtle, Lissemys punctata granosa, two magnocellular and 23 parvocellular neuronal complexes can be distinguished. The magnocellular complexes include the nucleus supraopticus and the nucleus paraventricularis; paraventricular neurons are partly arranged in rows parallel to the third ventricle. Most infundibular parvocellular nuclei display neurons disposed in rows parallel to the ventricular surface. In the preoptic region, the prominent parvocellular neuronal complexes encompass the nucleus periventricularis anterior, lateral preoptic area, the nucleus of the anterior commissure and the nucleus suprachiasmaticus. The prominent nucleus periventricularis posterior extends caudad and shows neurons arranged in vertical rows parallel to the third ventricle. Other parvocellular nuclei of the rostral hypothalamus are composed of clustered subunits. The nucleus arcuatus is a fairly large nuclear entity extending from the level marked dorsally by the nucleus paraventricularis to the area occupied by the nucleus of the paraventricular organ. A well-developed ventromedial nucleus is located ventrolateral to the paraventricular organ. The prominent paraventricular organ consists of tightly arranged neurons, some of which possess apical projections into the third ventricle; it is surrounded by the nucleus of the paraventricular organ. Nucleus hypothalamicus medialis et lateralis, nucleus hypothalamicus posterior and the nuclei recessus infundibuli are further nuclear units of the tuberal region. The caudal end of the hypothalamus is marked by the nucleus mamillaris; its neurons are scattered among the fibers of the retroinfundibular commissure. The median eminence is well developed and shows a large medial and two lateral protrusions into the infundibular recess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, vol II. Macmillan, New York

    Google Scholar 

  • Arimura A, Findley A (1971) Hypothalamic map for the regulation of gonadotropin release based mainly on data obtained in the rat. Res Reproduct 3:No. 1

  • Aschoff J, Dann S, Groos GA (1982) Vertebrate circadian systems: structure and physiology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bass AH, Northcutt RG (1981) Retinal recipient nuclei in the painted turtle, Chrysemys picta: an autoradiographic and HRP study. J Comp Neurol 199:97–112

    PubMed  Google Scholar 

  • Butler AB (1974) Retinal projections in the night lizard, Xantusia vigilis Baird. Brain Res 80:116–121

    PubMed  Google Scholar 

  • Butler AB, Northcutt RG (1973) Architectonic studies of the diencephalon of Iguana iguana Linnaeus. J Comp Neurol 149:436–462

    Google Scholar 

  • Crosby EC, Showers MJ (1969) Comparative anatomy of the preoptic and hypothalamic areas. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield (Ill), pp 61–135

    Google Scholar 

  • Cruce JAF (1974) A cytoarchitectonic study of the diencephalon of the Tegu lizard, Tupinambis nigropunctatus. J Comp Neurol 153:215–227

    PubMed  Google Scholar 

  • Diepen R (1962) Der Hypothalamus. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol IV(7). springer, Berlin Göttingen Heidelberg, pp 1–500

    Google Scholar 

  • Fernández-Llebrez P, Nadales AE, Alvarez M, Pérez-Figares JM (1986) The hypothalamo-neurohypophysial system of reptiles. In: Scharrer B, Korf H-W, Hartwig H-G (eds) Functional morphology of neuroendocrine systems. Evolutionary and environmental aspects. Springer, Berlin Heidelberg New York, pp 66

    Google Scholar 

  • Fernández-Llebrez P, Pérez J, Nadales AE, Cifuentes M, Grondona JM, Mancera JM, Rodríguez EM (1988) Immunocytochemical study of the hypothalamic magnocellular neurosecretory nuclei of the snake Natrix maura and the turtle Mauremys caspica. Cell Tissue Res 253:435–445

    PubMed  Google Scholar 

  • Huber GC, Crosby EC (1929) The nuclei and fiber paths of the avian diencephalon with consideration of telencephalic and certain mesencephalic centres and connections. J Comp Neurol 148:1–225

    Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus. The mind's clock Oxford University Press, New York Oxford

    Google Scholar 

  • Klüver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12:400–403

    PubMed  Google Scholar 

  • Kobayashi H, Matsui T, Ishii S (1970) Functional electron microscopy of the hypothalamic median eminence. Int Rev Cytol 29:281–381

    PubMed  Google Scholar 

  • Korf H-W, Panzica GC, Viglietti-Panzica, Oksche A (1988) Pattern of peptidergic neurons in the avian brain: clusters-local circuitries-projections. Bas Appl Histochem 32:55–75

    Google Scholar 

  • MacLean PD (1978) Why brian research on lizards? In: Greenberg N, MacLean PD (eds) Behavior and neurology of lizards. Nat Inst Ment Health, Maryland, pp 1–10

    Google Scholar 

  • Marschall C (1980) Hypothalamic monoamines in lizards (Lacerta). A histofluorescence study. Cell Tissue Res 205:95–105

    PubMed  Google Scholar 

  • Moore RY, Klein DC (1974) Visual pathways and central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res 71:17–33

    PubMed  Google Scholar 

  • Morgentaler A, Crews D (1978) Role of the anterior hypothalamus-preoptic area in the regulation of reproductive behavior in the lizard, Anolis carolinensis: implantation studies. Horm Behav 11:61–73

    PubMed  Google Scholar 

  • Morrell JI, Crews D, Ballin A, Morgentaler A, Pfaff DW (1979) 3H-estradiol, 3H-testosterone and 3H-dihydrotestosterone localization in the brain of the lizard Anolis carolinensis: an autoradiographic study. J Comp Neurol 188:201–224

    PubMed  Google Scholar 

  • Naik DR, Sar M, Stumpf WE (1981) Immunocytochemical localization of enkephalin in the central nervous system and pituitary of the lizard, Anolis carolinensis. J Comp Neurol 198:583–601

    PubMed  Google Scholar 

  • Northcutt RG (1984) Evolution of the vertebrate central nervous system: pattern and processes. Am Zool 24:701–716

    Google Scholar 

  • Oehmke HJ (1971a) Vergleichende neurohistologische Studien am Nucleus infundibularis einiger australischer Vögel. Z Zellforsch 122:122–138

    PubMed  Google Scholar 

  • Oehmke HJ (1971b) Struktur eines gonadenwirksamen Komplexes im Zwischenhirn-Hypophysensystem der Vögel. Modellstudie mit neuroanatomischen, fluoreszenzmikroskopischen und elektronenmikroskopischen Beiträgen. Habilitationsschrift, Justus-Liebig-Universität, Giessen

    Google Scholar 

  • Oksche A (1976) The neuroanatomical basis of comparative neuroendocrinology. Gen Comp Endocrinol 29:225–239

    PubMed  Google Scholar 

  • Oksche A (1978a) Pattern of neuroendocrine cell complexes (subunits) in hypothalamic nuclei: neurobiological and phylogenetic concepts. In: Bargmann W, Oksche A, Polenov A, Scharer B (eds) Neurosecretion and neuroendocrine activity. Evolution, structure and function. Springer, Berlin Heidelberg New York, pp 64–71

    Google Scholar 

  • Oksche A (1978b) The neurosecretory cell in the organization of the CNS: phylogenetic aspects. In: Vincent J-D, Kordon C (eds) Cell biology of hypothalamic neurosecretion. CNRS, Paris, pp 27–41

    Google Scholar 

  • Oksche A, Farner DS (1974) Neurohistological studies of the hypothalamo-hypophysial system of Zonotrichia leucophrys gambelii (Aves, Passeriformes). With special attention to its role in the control of reproduction. Ergebn Anat Entwickl-Gesch 48:1–136

    Google Scholar 

  • Parent A (1973) Distribution of monoamine-containing nerve terminals in the brain of the painted turtle, Chrysemys picta. J Comp Neurol 148:153–166

    PubMed  Google Scholar 

  • Parent A (1979) Monoaminergic systems of the brain. In: Gans C, Northcutt RG, Ulinski P (eds) Biology of the Reptilia, vol 10. Academic Press, London, pp 247–285

    Google Scholar 

  • Parent A, Poitras D (1974) Morphological organization of monoamine-containing neurons in the hypothalamus of the painted turtle (Chrysemys picta). J Comp Neurol 154:379–394

    PubMed  Google Scholar 

  • Parker TJ, Haswell WA (1967) A text book of zoology, vol II. Macmillan, New York, pp 952

    Google Scholar 

  • Powers AS, Reiner A (1980) A stereotaxic atlas of the forebrain and midbrain of the eastern painted turtle (Chrysemys picta picta). J Hirnforsch 21:125–159

    PubMed  Google Scholar 

  • Prasada Rao PD, Subhedar N (1977) A cytoarchitectonic study of the hypothalamus of the lizard, Calotes versicolor. Cell Tissue Res 180:63–85

    PubMed  Google Scholar 

  • Prasada Rao PD, Subhedar N, Raju PD (1981) Cytoarchitectonic pattern of the hypothalamus in the cobra, Naja naja. Cell Tissue Res 217:505–529

    PubMed  Google Scholar 

  • Reiner A, Krause JE, Keyer KT, Eldred WD, McKelvy JF (1984) The distribution of substance P in turtle nervous system: a radioimmunoassay and immunohistochemical study. J Comp Neurol 226:50–75

    PubMed  Google Scholar 

  • Romer AS (1968) Notes and comments on vertebrate paleontology. The University of Chicago Press, Chicago London

    Google Scholar 

  • Romer AS, Parsons TS (1977) The vertebrate body. Saunders, Philadelphia

    Google Scholar 

  • Schneider A (1976) Reaktionsmuster von Neuronenkomplexen im Nucleus arcuatus der Albinomaus. Karyometrische und cytophotometrische Studien. Med Diss, Justus-Liebig-Universität, Giessen

  • Schwartz WJ, Gainer H (1977) Suprachiasmatic nucleus: use of C-labeled deoxyglucose uptake as a functional marker, Science 197:1089–1091

    PubMed  Google Scholar 

  • Senn DG (1974) Notes on the amphibian and reptilian thalamus. Acta Anat 87:555–596

    PubMed  Google Scholar 

  • Sharp PJ, Follett BK (1970) The adrenergic supply within the avian hypothalamus. In: Bargmann W, Scharrer B (eds) Aspects of neuroendocrinology. Springer, Berlin Heidelberg New York, pp 95–103

    Google Scholar 

  • Smeets WJAJ (1988) The monoaminergic systems of reptiles investigated with specific antibodies against serotonin, dopamine, and noradrenaline. In: Schwerdtfeger WK, Smeets WJAJ (eds) The forebrain of reptiles. Int Symp Recent advances in understanding the structure and function of the forebrain in reptiles. Karger, Basel, pp 97–109

    Google Scholar 

  • Smeets WJAJ, Steinbusch HWM (1990) New insight into the reptilian catecholaminergic systems as revealed by antibodies against the neurotransmitters and their synthetic enzymes. J Chem Neuroanat 3:25–45

    PubMed  Google Scholar 

  • Smeets WJAJ, Sevensma JJ, Jonker AJ (1990) Comparative analysis of vasotocin-like immunoreactivity in the brain of the turtle Pseudemys scripta elegans and the snake Python regius. Brain Behav Ecol 35:65–84

    Google Scholar 

  • Subhedar N, Rama Krishna NS, Prasada Rao PD (1989) Cytoarchitectonic pattern of the hypothalamus in the crocodile, Gavialis gangeticus. Cell Tissue Res 255:89–105

    Google Scholar 

  • Szentágothai J, Flerkó B, Mess B, Halász B (1968) Hypothalamic control of the anterior pituitary. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Tsuneki K (1986) A survey of occurrence of about seventeen circumventricular organs in brains of various vertebrates with special reference to lower groups. J Hirnforsch 27:441–470

    PubMed  Google Scholar 

  • Vallarino M (1986) β-Endorphin-like immunoreactivity in the brain of the lizard, Lacerta muralis. Gen Comp Endocrinol 64:52–59

    PubMed  Google Scholar 

  • Vigh-Teichmann I, Vigh B (1983) The system of cerebrospinal fluid-contacting neurons. Arch Histol Jpn 46:427–468

    PubMed  Google Scholar 

  • Warren-Soest S, Farner DS, Oksche A (1973) Fluorescence microscopy of neurons containing primary catecholamines in the ventral hypothalamus of the white-crowned sparrow, Zonotrichia leucophrys gambelii. Z Zellforsch 141:1–17

    PubMed  Google Scholar 

  • Wheeler JM, Crews D (1978) The role of the anterior hypothalamicus-preoptic area in the regulation of male reproductive behaviour in the lizard, Anolis carolinensis: lesion studies. Horm Behav 11:42–60

    Article  Google Scholar 

  • Wingstrand KG (1951) The structure and development of the avian pituitary from a comparative and functional viewpoint. Lund, Gleerup

  • Wolters JG, Donkelaar HJ ten, Steinbusch HWM, Verhofstad AAJ (1985) Distribution of serotonin in the brain stem and spinal cord of the lizard Varanus exanthematicus: an immunohistochemical study. Neuroscience 14:169–193

    Article  Google Scholar 

  • Wolters JG, Donkelaar HJ ten, Verhofstad AAJ (1986) Distribution of some peptides substance P, (leu) enkephalin, (met) enkephalin in the brain stem and spinal cord of a lizard, Varanus exanthematicus. Neuroscience 18:917–946

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwivedi, S., Prasada Rao, P.D. Cytoarchitectonic pattern of the hypothalamus in the turtle, Lissemys punctata granosa . Cell Tissue Res. 270, 173–188 (1992). https://doi.org/10.1007/BF00381892

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00381892

Key words

Navigation