Skip to main content
Log in

Stereometabolism of ethylbenzene in man: gas chromatographic determination of urinary excreted mandelic acid enantiomers and phenylglyoxylic acid and their relation to the height of occupational exposure

  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Summary

Ethylbenzene is an important industrial solvent and a key substance in styrene production. Ethylbenzene metabolism leads to the formation of mandelic acid, which occurs in two enantiomeric forms, and phenyl-glyoxylic acid. To decide which enantiomer is preferably formed, 70 urine samples of exposed workers were taken at the end of shifts and — after 3-pentyl ester derivatisation — gas chromatographically analysed. The R/S ratio of mandelic acid enantiomers in urine amounts to 19:1, which means that R-mandelic acid is a major metabolite and S-mandelic acid is one of the minor urinary metabolites of ethylbenzene in man. The R/S ratio is independent of ambient air concentration of ethylbenzene within the investigated range. Compared to an ethylbenzene monoexposure the height of total mandelic acid excretion is decreased in the case of coexposure to other aromatic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACGIH (American Conference of Governmental Industrial Hygienists) (1989) Threshold limit values and biological exposure indices for 1990–1991. Cincinnati, 1990

  2. Angerer J (1983) Prävention beruflich bedingter Gesundheitsschäden durch Benzol, Toluol, Xylole und Ethylbenzol. Arbeitsmedizin, Sozialmedizin und Präventivmedizin Vol. 71. Gentner, Stuttgart

  3. Bardodej Z, Bardodejova E (1970) Biotransformation of ethylbenzene, styrene and alpha-methylstyrene in man. Am Ind Hyg Assoc J 31:206–209

    PubMed  Google Scholar 

  4. Deutsche Forschungsgemeinschaft (1991) Maximale Arbeitsplatzkonzentrationen und biologische Arbeitsstofftoleranzwerte 1991. Mitteilung XXVII der Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe. VCH, Weinheim

    Google Scholar 

  5. Drummond L, Caldwell J, Wilson HK (1989) The metabolism of ethylbenzene and styrene to mandelic acid: stereochemical considerations. Xenobiotica 19:199–207

    Google Scholar 

  6. ElMasri AM, Smith JN, Williams RT (1958) The metabolism of alkylbenzenes: phenylacetylene and phenylethylene (styrene). Biochem J 68:199–204

    Google Scholar 

  7. Engström K, Riihimäki V, Laine A (1984) Urinary disposition of ethylbenzene and m-xylene in man following separate and combined exposure. Int Arch Occup Environ Health 54:355–363

    PubMed  Google Scholar 

  8. Frank H, Nicholson GJ, Bayer E (1977) Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. J Chromatogr Sci 15:174–176

    Google Scholar 

  9. Gefahrstoffverordnung (GefStoffV — Verordnung über gefährliche Stoffe vom 26.08.86) (1986) Bundesgesetzbl, part I, Nr. 47, from 05.09.1986

  10. Gromiec JP, Piotrowski JK (1984) Urinary mandelic acid as an exposure test for ethylbenzene. Int Arch Occup Environ Health 55:61–72

    PubMed  Google Scholar 

  11. Henschler D (1986) Gesundheitsschādliche Arbeitsstoffe. Toxikoligisch-Arbeitsmedizinische Begründungen von MAK-Werten. Ethylbenzol. 11. Lieferung. Verlag ChemieWeinheim

    Google Scholar 

  12. Kiese M, Lenk W (1974) Hydroxyacetophenones: urinary metabolites of ethylbenzene and acetophenone in the rabbit. Xenobiotica 4:337–343

    PubMed  Google Scholar 

  13. Korn M, Wodarz R, Schoknecht W, Weichardt H, Bayer E (1984) Styrene metabolism in man: gas chromatographic separation of mandelic acid enantiomers in the urine of exposed persons. Arch Toxicol 55:59–63

    Google Scholar 

  14. Korn M, Gfrörer W, Wodarz I, Wodarz R, Schmahl FW (1989) Die Ausscheidung von L- und D-Mandelsäure nach Exposition mit einem ethylbenzolhaltigen Lösemittelgemisch. Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin; 29. Jahrestagung in Düsseldorf vom 26.–29.04.1989. Gentner, Stuttgart, pp 321–324

  15. Korn M, Gfrörer W, Wodarz I, Wodarz R, Schmahl FW (1990) Metabolism of ethylbenzene in man. Abstract in: Book of abstracts. 23rd International Congress on Occupational Health of the International Commission on Occupational Health. Montreal (Canada) 22.–28.09.1990, p 529

  16. Korn M, Wodarz I, Gfrörer W (1992) Stereometabolism of ethylbenzene in man: urinary excretion of mandelic acid and 1-phenylethanol enantiomers. Abstract in: Deutsche Gesellschaft für Pharmakologie und Toxikologie. Abstracts of the 33rd spring meeting. Mainz 10.–12.03.1992. Naunyn-Schmiedeberg's Arch Pharmacol [Suppl] 345: R32

  17. Smith JN, Smithies RH, Williams RT (1954) Studies in detoxication. 56. The metabolism of alkylbenzenes. Stereochemical aspects of the biological hydroxylation of ethylbenzene to methylphenylcarbinol. Biochem J 56:320–324

    PubMed  Google Scholar 

  18. Sullivan HR, Miller WM, McMahon RE (1976) Reaction pathways of in vivo stereoselective conversion of ethylbenzene to (−)-mandelic acid. Xenobiotica 6:49–54

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. med. Heinz Weichardt on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korn, M., Gfrörer, W., Herz, R. et al. Stereometabolism of ethylbenzene in man: gas chromatographic determination of urinary excreted mandelic acid enantiomers and phenylglyoxylic acid and their relation to the height of occupational exposure. Int. Arch Occup Environ Heath 64, 75–78 (1992). https://doi.org/10.1007/BF00381472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00381472

Key words

Navigation