Skip to main content

Relationship Between Exposure to Xylenes and Ethylbenzene Expressed Either in Concentration in Air and Amount of Their Metabolites Excreted in the Urine

  • Conference paper
  • First Online:
Advances in Safety Management and Human Factors

Abstract

The urinary excretion of methylhippurics, mandelic and phenylglyoxylic acids was studied in histopathological technicians (102 subjects; 14 men and 88 women) exposed to Xylol (xylenes and ethylbenzene). From each worker, the urine sample was analyzed by HPLC-UV and xylene isomers and ethylbenzene in air samples were determined by GC-FID. The mean values of time-weighted average (TWA) exposure to xylol in the Pathological Anatomy Lab were 119 ± 49 p.p.m. (mean ± S.D.) with a range 50–190 p.p.m. for xylene and 131 ± 50 p.p.m. with a range 68–200 p.p.m. for ethylbenzene. There was a linear correlation between the 8-h time weighted average exposure either to xylene isomers or ethylbenzene and the concentrations of methylhippuric acids (MHA) isomers or mandelic (MA) and phenylglyoxylic acids (PGA) in urine. The r2 value for the regression equation between total xylenes exposure and total MHA was 0.471 (positive correlation) and for the regression equation between ethylbenzene and MA + PGA was 0.950 (high positive correlation). No difference was found in the correlation between quantitative exposure and excretion in the three xylene isomers. Both MHA and MA + PGA can be used as indicators of commercial xylol exposures. So, the determination of the concentration of these metabolites in post-shift urine provides an effective means of estimating and monitoring human exposure to Xylol. Extrapolation of data from this study predicted a MHA concentration in post-shift urine of 1.27 g/g creatinine after exposure to a TWA of 100 p.p.m. of total xylenes and 0.7 g/g creatinine of MA + PGA after exposure to a TWA of 100 p.p.m. of ethylbenzene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fishbein L.: Xylenes: uses, occurrence and exposure: environmental carcinogens: methods of analysis and exposure measurement. In: Fishbein LO’Neill I.K. (ed.) Benzene and alkylated benzenes, pp. 109–120. World Health Organization, International Agency for Research on Cancer, Lyon, France (1988)

    Google Scholar 

  2. American Conference of Governmental Industrial Hygienists: Documentation of the Threshold Limits Values and Biological and Indices. 7th ed. American Conference of Governmental Industrial Hygienists, Cincinnati, OH (2013)

    Google Scholar 

  3. Kandyala, R., Raghavendra, S.C., Rajasekharan, S.T.: Xylene: an overview of its health hazards and preventive measures. J Oral Maxil Pathol. 14(1), 1–5 (2010)

    Article  Google Scholar 

  4. Dias-Teixeira M., Rangel R., Dias-Teixeira A., Domingues V., et al.: Risk of exposure to xylene in a pathologic anatomy laboratory: occupational safety and hygiene. In: Arezes P.M., et al. (eds.) Taylor and Francis Group, London (2013)

    Google Scholar 

  5. Rappaport, S.M., Kupper, L.L.: Variability of environmental exposures to volatile organic compounds. J. Exp. Anal. Environ. Epidemiol. 14(1), 92–107 (2004)

    Article  Google Scholar 

  6. Periago, J.F., Prado, C.: Evolution of occupational exposure to environmental levels of aromatic hydrocarbons in service stations. Ann. Occup. Hyg. 49(3), 233–240 (2005)

    Article  Google Scholar 

  7. De Palma, G., Poli, D., Manini, P., Andreoli, R., et al.: Environmental and biological monitoring of exposure to monoaromatic hydrocarbons and to methyl tert-butyl ether in a group of petrol station workers. G Ital di Med Lav Ergon. 33(3 Suppl), 49–52 (2011)

    Google Scholar 

  8. Kongtip, P., Anthayanon, T., Yoosook, W., Onchoi, C.: Exposure to particulate matter, CO2, CO, VOCs among bus drivers in Bangkok. J. Med. Assoc. Thai. 95(6 Suppl), 169–178 (2012)

    Google Scholar 

  9. Bieniek, G., Łusiak, A.: Occupational exposure to aromatic hydrocarbons and polycyclic aromatic hydrocarbons at a coke plant. Ann. Occup Hyg. 56(7), 796–807 (2012)

    Article  Google Scholar 

  10. Bieniek, G.: Aromatic and polycyclic hydrocarbons in air and their urinary metabolites in coke plant workers. Am. J. Ind. Med. 34(5), 445–454 (1998)

    Article  Google Scholar 

  11. Bieniek, G., Kurkiewicz, S., Wilczok, T., Klimek, K., et al.: Occupational exposure to aromatic hydrocarbons at a coke plant: Part II. Exposure assessment of volatile organic compounds. J. Occup. Health. 46(3), 181–186 (2004)

    Article  Google Scholar 

  12. Ciarrocca, M., Tomei, G., Fiaschetti, M., Caciari, T., et al.: Assessment of occupational exposure to benzene, toluene and xylenes in urban and rural female workers. Chemosphere 87(7), 812–819 (2012)

    Article  Google Scholar 

  13. Vyskocil, A., Truchon, G., Leroux, T., Lemay, F., et al.: A weight of evidence approach for the assessment of the ototoxic potential of industrial chemicals. Toxicol. Ind. Health 28(9), 796–819 (2012)

    Article  Google Scholar 

  14. DeHate, R.B., Johnson, G.T., Harbison, R.D.: Risk characterization of vapor intrusion in former manufactured gas plant sites. Regul. Toxicol. Pharmacol. 59(2), 353–359 (2011)

    Article  Google Scholar 

  15. Smith, K.W., Proctor, S.P., Ozonoff, A., McClean, M.D.: Inhalation exposure to jet fuel (JP8) among U.S. Air Force personnel. J. Occup. Environ. Hyg. 7(10), 563–572 (2010)

    Article  Google Scholar 

  16. Chmielowiec-Korzeniowska, A.: The concentration of volatile organic compounds (VOCs) in pig farm air. Ann. Agric. Environ. Med. 16(2), 249–256 (2009)

    Google Scholar 

  17. Desogus, G.F.: The environmental monitoring of the exposure to chemical contamination in operating rooms. G Ital Med Lav Ergon. 29(3 Suppl), 417–418 (2007)

    Google Scholar 

  18. Hein, M.J., Waters, M.A., van Wijngaarden, E., Deddens, J.A., et al.: Issues when modeling benzene, toluene, and xylene exposures using a literature database. J. Occup. Environ. Hyg. 5(1), 36–47 (2008)

    Article  Google Scholar 

  19. De Palma, G., Poli, D., Manini, P., Andreoli, R., et al.: Biomarkers of exposure to aromatic hydrocarbons and methyl tert-butyl ether in petrol station workers. Biomarkers 14(4), 343–351 (2012)

    Article  Google Scholar 

  20. Jiménez-Garza, O., Márquez-Gamiño, S., Albores, A., Caudillo-Cisneros, C., et al.: CYP2E1 phenotype in Mexican workers occupationally exposed to low levels of toluene. Toxicol. Lett. 210(2), 254–263 (2012)

    Article  Google Scholar 

  21. Engström, K., Härkönen, H., Kalliokoski, P., Rantanen, J.: Urinary mandelic acid concentration after occupational exposure to styrene and its use as a biological exposure test. Scand. J. Work Environ. Health 2(1), 21–26 (1976)

    Article  Google Scholar 

  22. Paustenbach D.J.: Occupational exposure limits in ILO encyclopedia of occupational health and safety. In: Herrick, R.F. (ed) International Labor Organization, Geneva (2011)

    Google Scholar 

  23. Ministério da Economia e do Emprego: Threshold limit value for occupational exposures Diário da República 1ª Série. pp. 580–589. (2012)

    Google Scholar 

  24. Mutti, A.: Biological monitoring in occupational and environmental toxicology. Toxicol. Lett. 108(2–3), 77–89 (1999)

    Article  Google Scholar 

  25. Sabbioni, G., Jones, C.R.: Biomonitoring of arylamines and nitroarenes. Biomarkers 7(5), 347–421 (2002)

    Article  Google Scholar 

  26. Lin, Y.S., Kupper, L.L., Rappaport, S.M.: Air samples versus biomarkers for epidemiology. Occup. Environ. Med. 62(11), 750–760 (2005)

    Article  Google Scholar 

  27. Pirkle, J.L., Sampson, E.J., Needham, L.L., Patterson, D.G., et al.: Using biological monitoring to assess human exposure to priority toxicants. Environ. Health Perspect. 103(3 Suppl), 45–48 (1995)

    Article  Google Scholar 

  28. Elovaara, E., Engström, K., Häyri, L., Hase, T., et al.: Metabolism of antipyrine and m-xylene in rats after prolonged pretreatment with xylene alone or xylene with ethanol, phenobarbital or 3-methylcholanthrene. Xenobiotica 19(9), 945–960 (1989)

    Article  Google Scholar 

  29. Gut, I., Terelius, Y., Frantík, E., Linhart, I., et al.: Exposure to various benzene derivatives differently induces cytochromes P450 2B1 and P450 2E1 in rat liver. Arch. Toxicol. 67(4), 237–243 (1993)

    Article  Google Scholar 

  30. Raunio, H., Liira, J., Elovaara, E., Riihimäki, V., et al.: Cytochrome P450 isozyme induction by methyl ethyl ketone and m-xylene in rat liver. Toxicol. Appl. Pharmacol. 103(1), 175–179 (1990)

    Article  Google Scholar 

  31. Savolainen, H., Vainio, H., Helojoki, M., Elovaara, E.: Biochemical and toxicological effects of short-term intermittent xylene inhalation exposure and combined ethanol intake. Arch. Toxicol. 41, 195–205 (1978)

    Article  Google Scholar 

  32. Toftgård, R., Halpert, J., Gustafsson, J.A.: Xylene induces a cytochrome P-450 isoenzyme in rat liver similar to the major isozyme induced by phenobarbital. Mol. Pharmacol. 23(1), 265–271 (1983)

    Google Scholar 

  33. Lieber, C.S.: Cytochrome P-4502E1: its physiological and pathological role. Physiol. Rev. 77(2), 517–544 (1997)

    Google Scholar 

  34. Langman, R.J.: Xylene: its toxicity, measurement of exposure levels, absorption, metabolism and clearance. Pathology 26, 301–309 (1994)

    Article  Google Scholar 

  35. Low, L.K., Meeks, J.R., Mackerer, C.R.: Health effects of the alkylbenzenes. II. Xylenes. Toxicol. Ind. Health 5(1), 85–105 (1989)

    Article  Google Scholar 

  36. Miller, M.J., Edwards, J.W.: Possible preferential metabolism of xylene isomers following occupational exposure to mixed xylenes. Int. Arch. Occup. Environ. Health 72(2), 89–97 (1999)

    Article  Google Scholar 

  37. Sugihara, R., Ogata, M.: Quantitation of urinary m- and p-methylhippuric acids as indices of m- and p-xylene exposure. Int. Arch. Occup. Environ. Health 41(4), 281–286 (1978)

    Article  Google Scholar 

  38. Młynarczyk, W., Slusarek, D.: Use of methylhippuric test in industry for assessing exposure to xylene. Med. Pr. 32(6), 445–449 (1981)

    Google Scholar 

  39. Lowry, L.K.: Biological exposure index as a complement to the TLV. J Occup Med 28(8), 578–582 (1986)

    Article  Google Scholar 

  40. Jonai, H., Sato, M.: Exposure indices for painters exposed to toluene and xylene at low concentrations. Ind. Health 26(3), 197–202 (1988)

    Article  Google Scholar 

  41. Kawai, T., Mizunuma, K., Yasugi, T., Horiguchi, S., et al.: Urinary methylhippuric acid isomer levels after occupational exposure to a xylene mixture. Int. Arch. Occup. Environ. Health 63(1), 69–75 (1991)

    Article  Google Scholar 

  42. Agency for Toxic Substances and Disease Registry (ATSDR). http://www.atsdr.cdc.gov/toxprofiles/tp110-p.pdf

  43. Fishbein, L.: An overview of environmental and toxicological aspects of aromatic hydrocarbons IV. Ethylbenzene. Sci. Total Environ. 44(3), 269–287 (1985)

    Article  Google Scholar 

  44. Engstrom, K.M.: Metabolism of inhaled ethylbenzene in rats. Scand J Work Env Hea. 10(2), 83–87 (1984)

    Article  Google Scholar 

  45. Sams, C., Loizou, G.D., Cocker, J., Lennard, M.S.: Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP). Toxicol. Lett. 147(3), 25–260 (2004)

    Article  Google Scholar 

  46. American Conference of Governmental Industrial Hygienists: TLVs and BEIs, Threshold Limit Values for Chemical Substances and Physical Agents. 7th ed. American Conference of Governmental Industrial Hygienists, Cincinnati, OH (2013)

    Google Scholar 

  47. Inoue, O., Seiji, K., Kawai, T., Watanabe, T., et al.: Excretion of methylhippuric acids in urine of workers exposed to a xylene mixture: comparison among three xylene isomers and toluene. Int. Arch. Occup. Environ. Health 64(7), 533–539 (1993)

    Article  Google Scholar 

  48. Huang, M.Y., Jin, C., Liu, Y.T., Li, B.H., et al.: Exposure of workers to a mixture of toluene and xylenes I. Metabolism. Occup. Environ. Med. 51(1), 42–46 (1994)

    Article  Google Scholar 

  49. Heinrich-Ramm R., Jakubowski M., Heinzow B., Molin Christensen J., et al.: Biological monitoring for exposure to volatile organic compounds. Pure Appl. Chem. 72(3), 385–436 (2000)

    Google Scholar 

  50. Subcommittee on Biologic Markers in Urinary Toxicology, Board on Environmental Studies and Toxicology, Commission on Life Sciences National Research Council: Biologic Markers in Urinary Toxicology. The National Academies Press, Washington (1995)

    Google Scholar 

  51. Pendergrass S.M.: Hydrocarbons, aromatic, national institute for occupational safety and health, editor manual of analytical methods (NMAM) (2003)

    Google Scholar 

  52. Dias-Teixeira A., Dias-Teixeira M., Rangel R., Tarelho S., et al.: Development and validation of HPLC-UV method to determine creatinine and metabolites of xylene in urine: Acta Medicinae Legalis et Socialis, In: Vieira D.N., et al. (ed). Coimbra University Press, Coimbra (2010)

    Google Scholar 

  53. Vanroosmalen, P.B., Drummond, I.: Simultaneous determination by gas-chromatography of major metabolites in urine of toluene, xylenes and styrene. Br. J. Ind. Med. 35(1), 56–60 (1978)

    Google Scholar 

  54. Poláková, M., Krajcovicová, Z., Melus, V., Stefkovicová, M., et al.: Study of urinary concentrations of mandelic acid in employees exposed to styrene. Cent. Eur. J. Public Health 20(3), 226–232 (2012)

    Google Scholar 

  55. Jang, J.Y., Droz, P.O., Kim, S.: Biological monitoring of workers exposed to ethylbenzene and co-exposed to xylene. Int. Arch. Occup. Environ. Health 74(1), 31–37 (2001)

    Article  Google Scholar 

  56. Jacobson, G.A., McClean, S.: Biological monitoring of low level occupational xylene exposure and the role of recent exposure. Ann. Occup. Hyg. 47(4), 331–336 (2003)

    Article  Google Scholar 

  57. Engström, K., Riihimäki, V., Laine, A.: Urinary disposition of ethylbenzene and m-xylene in man following separate and combined exposure. Int. Arch. Occup. Environ. Health 54(4), 355–363 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Dias-Teixeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dias-Teixeira, M. et al. (2016). Relationship Between Exposure to Xylenes and Ethylbenzene Expressed Either in Concentration in Air and Amount of Their Metabolites Excreted in the Urine. In: Arezes, P. (eds) Advances in Safety Management and Human Factors. Advances in Intelligent Systems and Computing, vol 491. Springer, Cham. https://doi.org/10.1007/978-3-319-41929-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41929-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41928-2

  • Online ISBN: 978-3-319-41929-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics