Skip to main content
Log in

Carbon relations and competition between woody species in a Central European hedgerow

IV. Growth form and partitioning

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Growth of woody species has two components, one pertaining to increment of biomass, the other to the architectonic arrangement of dry matter in space. Only the combination of both components explained the competitive strength of species that dominate in different stages of a hedgerow succession in Central Europe. Biomass increment was measured using an empirical volumetric method, and plant architecture was investigated from branching patterns which determined the growth form of species. Assimilate partitioning was determined from total plant carbon gain and biomass increment in different above-ground plant parts. Those species with lower dry matter, nitrogen, and phosphorus costs for occupying and shading space during canopy development were the stronger competitors and replanced pioneers, even though their rate of CO2 uptake was low. Ecological implications of different partitioning patterns for the survival of a plant and for successional changes in vegetation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson MC (1964) Light relations of terrestrial plant communities and their measurement. Biol Rev 39:425–486

    Google Scholar 

  • Anderson MC (1966) Stand structure and light penetration. II. A theoretical analysis. J Appl Ecol 3:41–54

    Google Scholar 

  • Bazzaz FA (1979) The physiological ecology of plant succession. Ann Rev Ecol Syst 10:351–371

    Google Scholar 

  • Bazzaz FA, Pickett STA (1980) Physiological ecology of tropical succession: a comparative review. Ann Rev Ecol Syst 11:287–310

    Google Scholar 

  • Brouwer R (1963) Some aspects of the equilibrium between overground and underground plant parts. Jaarb Inst Biol Scheikd Onderzoek (IBS) pp 31–39

  • Brouwer R (1983) Functional equilibrium: sense or nonsense? Neth J Agric Sci 31:335–348

    Google Scholar 

  • Chalmers DI, Van den Ende B (1975) Production of peach trees: Factors affecting dry-weight distribution during tree growth. Ann Bot 39:423–432

    Google Scholar 

  • Chapin III FS (1980) The mineral nutrition of wild plants. Ann Rev Ecol Syst 11:233–260

    Google Scholar 

  • Daubenmire R (1968) Plant communities. Harper & Row, London

    Google Scholar 

  • Drury WH, Nisbert ICT (1973) Succession. J Arnold Arboretum Harvard Univ, 54:331–368

    Google Scholar 

  • Ellenberg H (1978) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. 2nd edition, Stuttgart, p 982

  • Ellenberg H, Mueller-Dombois D (1967) A key to Rainkiaer plant life forms with revised subdivisions. Ber geobot Inst ETH Stiftung Rübel, Zürich 37:56–73

    Google Scholar 

  • Field C, Merino J, Mooney HA (1983) Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia (Berlin) 60:384–389

    Google Scholar 

  • Golley FB (1977) Ecological succession. Benchmark papers in ecology Vol 5. Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross. p 373

    Google Scholar 

  • Horn HS (1971) The adaptive geometry of trees. Princeton, New Jersey, Princeton University Press, p 144

    Google Scholar 

  • Horn HS (1974) The ecology of secondary succession. Ann Rev Ecol Syst 5:25–37

    Google Scholar 

  • Horn HS (1975) Markovian processes of forest succession. In: Cody L, Diamond IM (ed) Ecology and evolution of communities. Harvard Univ Press, Cambridge, England, pp 196–211

    Google Scholar 

  • Jarvis PG, Leverenz JW (1983) Productivity of temperate, deciduous and evergreen forests. Encyclopedia of plant physiology, NS, Springer, Berlin Heidelberg New York, vol 12D, pp 233–280

    Google Scholar 

  • Kriedemann PE, Neales TF, Ashton DH (1964) Photosynthesis in relation to leaf orientation and light interception. Aust J Biol Sci 17:22–52

    Google Scholar 

  • Küppers M (1982) Kohlenstoffhaushalt, Wasserhaushalt, Wachstum und Wuchsform von Holzgewächsen im Konkurrenzgefüge eines Heckenstandortes. Dr. Thesis Bayreuth

  • Küppers M (1984a) Carbon relations and competition between woody species in a Central European hedgerow. I. Photosynthetic characteristics. Oecologia (Berlin) 64:332–343

    Google Scholar 

  • Küppers M (1984b) Carbon relations and competition between woody species in a Central European hedgerow. II. Stomatal responses, water use, and conductivity to liquid water in the root/leaf pathway. Oecologia (Berlin) 64:344–354

    Google Scholar 

  • Küppers M (1984c) Carbon relations and competition between woody species in a Central European hedgerow. III. Carbon and water balance on the leaf level. Oecologia (Berlin) 65:94–100

    Google Scholar 

  • Larcher W (1980) Ökologie der Pflanzen. UTB 232, 3rd ed., Ulmer, Stuttgart

    Google Scholar 

  • MacArthur RH (1958) A note on stationary age distributions in single-species populations and stationary species populations in a community. Ecology 39:146–147

    Google Scholar 

  • Mooney HA (1980) Seasonality and gradients in the study of stress adaptation. In: Turner NC, Kramer PI (eds) Adaptation of plants to water and leaf temperature stress. John Wiley, New York, pp 279–294

    Google Scholar 

  • Newman EI (1983) Interactions between plants. Encyclopedia of Plant Physiology NS Vol 12C. Springer Verlag, Berlin Heidelberg New York, pp 679–710

    Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Google Scholar 

  • Odum EP (1971) Funamentals of ecology. Philadelphia: Saunders, 3rd ed, p 574

    Google Scholar 

  • Penning de Vries FWT (1983) Modelling of grwoth and production. Encyclopedia of plant physiology NS Vol 12D, Springer Verlag; Berlin Heidelberg New York, pp 117–150

    Google Scholar 

  • Rauth W (1938) Über die Verzweigung ausläuferbildender Sträucher. Hercynia 187–231, Halle/Saale

  • Rauh W (1950) Morphologie der Nutzpflanzen. Heidelberg

  • Reif A (1983) Nordbayerische Heckengesellschaften. Hoppea 41:3–204

    Google Scholar 

  • Richards D, Rowe RN (1977a) Effects of root restrictions, root pruning and 6-benzylaminopurine on the growth of peach seedlings. Ann Bot 41:729–740

    Google Scholar 

  • Richards D, Rowe RN (1977b) Root-shoot interactions in peach: The function of the root. Ann Bot 41:1211–1216

    Google Scholar 

  • Schmidt W (1975) Vegetationsentwicklung auf Brachland — Ergebnisse eines fünfjährigen Sukzessions-Versuches. In: Schmidt W (ed) Sukzessionsforschung, J Cramer, Vaduz, pp 407–434

    Google Scholar 

  • Schulze E-D (1970) Der CO2-Gaswechsel der Buche (Fagus silvatica L) in Abhängigkeit von den Klimafaktoren im Freiland. Flora 159:177–232

    Google Scholar 

  • Schulze E-D (1972) Die Wirkung von Licht und Temperatur auf den CO2-Gaswechsel verschiedener Lebensformen aus der Krautschicht eines montanen Buchenwaldes. Oecologia (Berlin) 9:235–258

    Google Scholar 

  • Schulze E-D (1982) Plant life forms and their carbon, water and nutrient relations. Encylopedia of Plant Physiology, NS Vol 12B. Springer Verlag, Berlin Heidelberg New York, pp 616–676

    Google Scholar 

  • Schulze E-D, Reif A, Küppers M (1982) Ökologische Funktionsanalyse von Hecken und Flurgehölzen — Ökologische Untersuchungen über Strukturen und Funktionen der Pflanzen in Feldhecken und deren Beziehung zu angrenzenden Biotopen. Schlußbericht Bayerisches Landesamt für Umweltschutz, München p 450

    Google Scholar 

  • Schulze E-D, Turner NC, Glatzel G (1984) Carbon, water and nutrient relations of two mistletoes and their hosts: A hypothesis. Plant Cell Env 7:293–299

    Google Scholar 

  • Schulze E-D, Küppers M, Matyssek R (1985) The roles of carbon balance and branching pattern in the growth of woody species. In: Givnish TJ (ed) Evolutionary constraints on primary productivity: Adaptive strategies of energy capture in plants. Cambridge University Press, London (in press)

    Google Scholar 

  • Troll W (1937) Vergleichende Morphologie der höheren Pflanzen Bd 1, Teil 1, Vegetationsorgane. Berlin, Reprint Koeltz, Königstein

  • Wareing PF (1970) Growth and its co-ordination in trees. In: Luckwill LC, Cutting CV (eds) Physiology of tree crops. Academic Press, London

    Google Scholar 

  • Whittaker RH (1975a) Functional aspects of succession in deciduous forests. In: W. Schmidt (ed) Sukzessionsforschung, Cramer, Vaduz, pp 377–405

    Google Scholar 

  • Whittaker RH (1975b) Communities and ecosystems. New York, London: MacMillan, p 385

    Google Scholar 

  • Willmanns O (1975) Junge Änderungen des Kaiserstühler Halbtrockenrasens. Daten und Dokumente zum Umweltschutz Nr. 14, Vorträge der Tagung über “Umweltforschung” der Universität Hohenheim, Hohenheim

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küppers, M. Carbon relations and competition between woody species in a Central European hedgerow. Oecologia 66, 343–352 (1985). https://doi.org/10.1007/BF00378296

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00378296

Keywords

Navigation