Skip to main content
Log in

Fe-rich cordierites from acid volcanic rocks, an optical and x-ray single-crystal structure study

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Low-cordierites from volcanic rocks of Tuscany (Italy), Lipari (Italy), and of the Cerberean Cauldron (Australia) were investigated. Both single crystal structure refinements and optical data indicate that the Italian samples contain only low concentrations of volatiles (<0.3 wt.%), whereas in the crystals from the Cerberean Cauldron more than 50% of the structural channels are occupied, preferentially by H2O (1.6–1.9 wt.%). This high volatile concentration is in qualitative agreement with the estimated p,T-conditions (4–4.5 kbar at 750–780° C) of the magma prior to eruption. In contrast, the Italian cordierites have formed at temperatures above 950° C and pressures below 2 kbars. Low-cordierites of volcanic origin reveal the same high degree of Si, Al-ordering as observed for low-cordierites from metamorphic rocks and pegmatites. The crystals studied possess F(mol)=(Fe+Mn)/(Fe+Mn+Mg)>0.4 and provide additional information about the crystal structure of Fe-rich cordierites. With increasing Fe→Mg substitution the mean T11(Al)-O distance decreases slightly, which is probably not caused by substitution of smaller cations on t11 but by angular distortion of the tetrahedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armbruster Th (1985) Effect of H2O on the structure of low-cordierite, a single crystal X-ray study. Proceedings of the IMA-meeting, held at Varna 1982 (in press)

  • Armbruster Th, Bloss FD (1982) Orientation and effects of channel H2O and CO2 in cordierite. Am Mineral 67:284–291

    Google Scholar 

  • Armbruster Th, Schreyer W, Hoefs J (1982) Very high CO2 cordierite from Norwegian Lapland: Mineralogy, petrology, and carbon isotopes. Coiltrib Mineral Petrol 81:262–267

    Google Scholar 

  • Armbruster Th, Irouschek A (1983) Cordierites from the Lepontine Alps: Na+Be→Al substitution, gas content, cell parameters and optics. Contrib Mineral Petrol 82:389–396

    Google Scholar 

  • Bergeat A (1910) Der Cordieritandesit von Lipari, seine andalusitführenden Einschlüsse und die genetischen Beziehungen zwischen dem Andalusit, Sillimanit, Biotit, Cordierit, Orthoklas and Spinell in den letzteren. N Jahrb Mineral Geol Palaeontol (Beil) 30:575–627

    Google Scholar 

  • Birch WD, Gleadow AJW (1974) The genesis of garnet and cordierite in acid volcanic rocks: evidence from the Cerberean Cauldron, Central Victoria, Australia. Contrib Mineral Petrol 45:1–13

    Google Scholar 

  • Bloss FD (1981) The spindle stage, principles and practice, Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Bloss FD, Armbruster Th (1982) Gladstone-Dale constants for H2O and CO2 in cordierite. Can Mineral 20:55–58

    Google Scholar 

  • Chlochiatti R, Metrich N (1977) Comparison entre les inclusions vitreuses des cordiérites des rhyodacites de Toscane (San Vincenzo) et celles des rhyodacites de la Tunisie septentrionale (Aïn ed Deflaia). Cont Rendus Acad Sci Paris, (Ser D) 284:887–890

    Google Scholar 

  • Cohen JP, Ross FK, Gibbs GV (1977) An X-ray and neutron diffraction study of hydrous low cordierite. Am Mineral 62:67–78

    Google Scholar 

  • Enraf Nonius (1983) Structure determination package (SDP). Enraf Nonius, Delft

    Google Scholar 

  • Gibbs GV (1966) The polymorphism of cordierite I: The crystal structure of low cordierite. Am Mineral 51:1068–1087

    Google Scholar 

  • Hochella MF, Brown GE, Ross FK, Gibbs GV (1979) High-temperature crystal chemistry of hydrous Mg- and Fe-cordierites. Am Mineral 64:337–351

    Google Scholar 

  • Kitamura M, Hiroi Y (1982) Indialite from Unazuki pelitic schist, Japan, and its transition texture to cordierite. Contrib Mineral Petrol 80:110–116

    Google Scholar 

  • Langer K, Schreyer W (1969) Infrared and powder X-ray diffraction studies on the polymorphism of cordierite Mg2(Al4Si5O18). Am Mineral 54:1442–1459

    Google Scholar 

  • Lepezin GG, Kuznetsova IK, Lavrentev YuG, Chmelnicova OS (1976) Optical methods of determination of the water contents in cordierites. Contrib Mineral Petrol 58:319–329

    Google Scholar 

  • Meagher EP, Gibbs GV (1977) The polymorphism of cordierite II: the crystal structure of indialite. Can Mineral 15:43–49

    Google Scholar 

  • Medenbach O, Maresch WV, Mirwald PW, Schreyer WL (1980) Variation of refractive index of synthetic Mg-cordierite with H2O content. Am Mineral 65:367–373

    Google Scholar 

  • Mirwald PW (1982) A high-pressure phase transition in cordierite. Am Mineral 67:277–283

    Google Scholar 

  • Pichler H (1970) Italienische Vulkan-Gebiete I: Somma-Vesuv, Latium, Toscana. Sammlung Geologischer Führer 51, Gebrüder Borntraeger, Berlin Stuttgart

    Google Scholar 

  • Pichler H (1981) Italienische Vulkan-Gebiete III: Lipari, Vulcano, Stromboli, Tyrrhenisches Meer. Sammlung Geologischer Führer 69, Gebrüder Borntraeger, Berlin Stuttgart

    Google Scholar 

  • Schenk K, Armbruster Th (1985) Beidellite-nontronite, an alteration product of cordierite in the rhyolite from Torniella (Tuscany, Italy). N Jahrb Mineral Monatsh:385–395

  • Schreyer W (1966) Synthetische und natürliche Cordierite III: Polymorphiebeziehungen. N Jahrb Mineral Abh 105:211–244

    Google Scholar 

  • Schreyer W, Gordillo CE, Werding G (1979) A new sodian-beryllian cordierite from Soto, Argentina and the relationship between distortion index, Be-content, and state of hydration. Contrib Mineral Petrol 70:421–428

    Google Scholar 

  • Selkregg KR, Bloss FD (1980) Cordierites: compositional controls of Δ, cell parameters, and optical properties. Am Mineral 65:522–533

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Google Scholar 

  • Speer AJ (1978) The stratigraphy and depositional environment of the Aphebian Snyder Group, Labrador. Can J Earth Sci 15:52–68

    Google Scholar 

  • Speer AJ (1982) Metamorphism of the pelitic rocks of the Snyder Group in the contact aureole of the Kiglapait layered intrusion, Labrador: effects of buffering partial pressure of water. Can J Earth Sci 19:1888–1909

    Google Scholar 

  • Stewart JM, Machin PA, Dickinson CW, Ammon HL, Heck H, Flack H (1976) The X-ray system of crystallographic programs, version 1976. Technic Rep Tr 446, Computer Science Center, Univ Maryland, College Park, Maryland

    Google Scholar 

  • Vielzeuf D (1983) The spinel quartz associations in high grade xenoliths from Tallante (S.E. Spain) and their potential use in geothermometry and barometry. Contrib Mineral Petrol 82:301–311

    Google Scholar 

  • Wallace JH, Wenk HR (1980) Structure variation in low cordierites. Am Mineral 65:96–111

    Google Scholar 

  • Zeck HP (1970) An eruption migmatite from Cerro del Hoyazo, SE Spain. Contrib Mineral Petrol 26:225–246

    Google Scholar 

  • Zeck HP (1972) Transformation trillings in cordierite. J Petrol 13:367–380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armbruster, T. Fe-rich cordierites from acid volcanic rocks, an optical and x-ray single-crystal structure study. Contr. Mineral. and Petrol. 91, 180–187 (1985). https://doi.org/10.1007/BF00377765

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00377765

Keywords

Navigation