Skip to main content

Advertisement

Log in

Single-crystal X-ray diffraction study of Fe2SiO4 fayalite up to 31 GPa

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Olivine is widely believed to be the most abundant mineral in the Earth’s upper mantle. Here, we report structural refinement results for the Fe-end-member olivine, Fe2SiO4 fayalite, up to 31 GPa in diamond-anvil cell, using single-crystal synchrotron X-ray diffraction. Unit-cell parameters a, b, c and V, average Si–O Fe–O bond lengths, as well as Si–O Fe–O polyhedral volumes continuously decrease with increasing pressure. The pressure derivative of isothermal bulk modulus \(K_{T0}^{\prime }\) is determined to be 4.0 (2) using third-order Birch–Murnaghan equation of state with ambient isothermal bulk modulus fixed to 135 GPa on the basis of previous Brillouin measurements. The Si–O tetrahedron is stiffer than the Fe–O octahedra, and the compression mechanism is dominated by Fe–O bond and Fe–O octahedral compression. Densities of olivine along 1600 and 900 K adiabats are calculated based on this study. The existence of metastable olivine inside the cold subduction slab could cause large positive buoyancy force against subduction, slow down the subduction and possibly affect the slab geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrusta R, Hunen J, Goes S (2014) The effect of metastable pyroxene on the slab dynamics. Geophys Res Lett 41(24):8800–8808

    Article  Google Scholar 

  • Akimoto SI, Komada E, Kushiro I (1967) Effect of pressure on melting of olivine and spinel polymorph of Fe2SiO4. J Geophys Res 72(B2):679–686

    Article  Google Scholar 

  • Andrault D, Bouhifd MA, Itie JP, Richet P (1995) Compression and amorphization of (Mg,Fe)2SiO4 olivines: an X-ray diffraction study up to 70 GPa. Phys Chem Miner 22(2):99–107

    Article  Google Scholar 

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32

    Article  Google Scholar 

  • Chen GQ, Ahrens TJ, Stolper EM (2002) Shock-wave equation of state of molten and solid fayalite. Phys Earth Planet Inter 134:35–52

    Article  Google Scholar 

  • Däßler R, Yuen DA (1996) The metastable olivine wedge in fast subducting slabs: constraints from thermo-kinetic coupling. Earth Planet Sci Lett 137:109–118

    Article  Google Scholar 

  • Dera P, Zhuravlev K, Prakapenka V, Rivers ML, Finkelstein GJ, Grubor-Urosevic O, Tschauner O, Clark SM, Downs RT (2013) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press Res 33:466–484

    Article  Google Scholar 

  • Downs RT, Zha CS, Duffy TS, Finger LW (1996) The equation of state of forsterite to 17.2 GPa and effects of pressure media. Am Mineral 81:51–55

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington, pp 29–44

    Chapter  Google Scholar 

  • Finkelstein GJ, Dera PK, Jahn S, Oganov AR, Holl CM, Meng Y, Duffy TS (2014) Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. Am Mineral 99(1):35–43

    Article  Google Scholar 

  • Fujino K, Sasaki S, Takéuchi Y, Sadanaga R (1981) X-ray determination of electron distributions in forsterite, fayalite and tephroite. Acta Crystallogr B 37:513–518

    Article  Google Scholar 

  • Graham EK, Schwab JA, Sopkin SM, Takei H (1988) The pressure and temperature dependence of the elastic properties of single crystal fayalite. Phys Chem Miner 16:186–198

    Article  Google Scholar 

  • Hazen RM (1977) Effects of temperature and pressure on the crystal structure of ferromagnesian olivine. Am Mineral 62:286–295

    Google Scholar 

  • Hazen RM, Downs RT (2000) High-temperature and high-pressure crystal chemistry. Mineralogical Society of America, Blacksburg

    Google Scholar 

  • Jiang G, Zhao D, Zhang G (2015) Detection of metastable olivine wedge in the western Pacific slab and its geodynamic implications. Phys Earth Planet Inter 238:1–7

    Article  Google Scholar 

  • Katsura T, Yoneda A, Yamazaki D, Yoshino T, Ito E (2010) Adiabatic temperature profile in the mantle. Phys Earth Planet Inter 183:212–218

    Article  Google Scholar 

  • Kawakatsu H, Yoshioka S (2011) Metastable olivine wedge and deep dry cold slab beneath southwest Japan. Earth Planet Sci Lett 303:1–10

    Article  Google Scholar 

  • King SD, Frost DJ, Rubie DC (2015) Why cold slabs stagnate in the transition zone. Geology 43:231–234

    Article  Google Scholar 

  • Kudoh Y, Takeda H (1986) Single crystal X-ray diffraction study on the bond compressibility of fayalite Fe2SiO4 and rutile TiO2 under high pressure. Phys. B&C 139:333–336

    Article  Google Scholar 

  • Kudoh Y, Takeuchi Y (1985) The crystal structure of forsterite Mg2SiO4 under high pressure up to 149 kb. Z Kristallogr 171:291–302

    Google Scholar 

  • Lidaka T, Suetsugu D (1992) Seismological evidence for metastable olivine inside a subducting slab. Nature 356:593–595

    Article  Google Scholar 

  • Liu L-G, Mernagh TP (1993) Raman spectra of forsterite and fayalite at high pressures and room temperature. High Press Res 11:241–256

    Article  Google Scholar 

  • Liu W, Kung J, Li B (2005) Elasticity of San Carlos olivine to 8 GPa and 1073 K. Geophys Res Lett 32(16):L16301

    Article  Google Scholar 

  • Liu Q, Liu W, Whitaker ML, Wang L, Li B (2010) In situ ultrasonic velocity measurements across the olivine-spinel transformation in Fe2SiO4. Am Mineral 95(7):1000–1005

    Article  Google Scholar 

  • Mao HK, Bell PM (1972) Electrical conductivity and the red shift of absorption in olivine and spinel at high pressure. Science 176(4033):403–406

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  • Mosenfelder JL, Marton FC, Ross CR II, Kerschhofer L, Rubie DC (2001) Experimental constraints on the depth of olivine metastability in subducting lithosphere Phys. Earth Planet Inter 127(1):165–180

    Article  Google Scholar 

  • Nestola F, Pasqual D, Smyth JR, Novella D, Secco L, Manghnani MH, Negro AD (2011) New accurate elastic parameters for the forsterite–fayalite solid solution. Am Mineral 96(11–12):1742–1747

    Article  Google Scholar 

  • Richard G, Richet P (1990) Room-temperature amorphlzation of fayalite and high-pressure properties of Fe2SiO4 liquid. Geophys Res Lett 17(12):2093–2096

    Article  Google Scholar 

  • Rivers ML, Prakapenka VB, Kubo A, Pullins C, Hall CM, Jacobsen SD (2008) The COMPRES/GSECARS gas loading system for diamond anvil cells at the Advanced Photon Source. High Press Res 28:273–292

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Sci 172(3983):567–570

    Article  Google Scholar 

  • Rubie DC, Ross CR (1994) Kinetics of the olivine-spinel transformation in subducting lithosphere: experimental constraints and implications for deep slab processes. Phys Earth Inter 86:223–241

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    Article  Google Scholar 

  • Speziale S, Duffy TS, Angel RJ (2004) Single-crystal elasticity of fayalite to 12 GPa. J Geophys Res 109:B12202

    Article  Google Scholar 

  • Stackhouse S, Stixrude L, Karki BB (2010) Determination of the high-pressure properties of fayalite from first-principles calculations. Earth Planet Sci Lett 289(3):449–456

    Article  Google Scholar 

  • Stein SA, Rubie DC (1999) Deep earthquakes in real slabs. Science 286:909

    Article  Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2005) Mineralogy and elasticity of the oceanic upper mantle: origin of the low velocity zone. J Geophys Res 110:B03204

    Article  Google Scholar 

  • Sung C-H, Burns RG (1976) Kinetics of high pressure phase transformations: implications to the evolution of the olivine-spinel transition in the downgoing lithosphere and its consequences on the dynamics of the mantle. Tectonophysics 31:1–32

    Article  Google Scholar 

  • Tetzlaff M, Schmeling H (2000) The influence of olivine metastability on deep subduction of oceanic lithosphere Phys. Earth Planet Inter 120(1):29–38

    Article  Google Scholar 

  • Tetzlaff M, Schmeling H (2009) Time-dependent interaction between subduction dynamics and phase transition kinetics. Geophys J Int 178(2):826–844

    Article  Google Scholar 

  • Van Mierlo WL, Langenhorst F, Frost DJ, Rubie DC (2013) Stagnation of subducting slabs in the transition zone due to slow diffusion in majoritic garnet. Nat Geosci 6(5):400–403

    Article  Google Scholar 

  • Webb SL (1989) The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa. Phys Chem Miner 16:684–692

    Article  Google Scholar 

  • Williams Q, Knittle E, Reichlin R, Martin S, Jeanloz R (1990) Structural and electronic properties of Fe2SiO4–fayalite at ultrahigh pressures: amorphization and gap closure. J Geophys Res 95(B13):21549–21563

    Article  Google Scholar 

  • Xu W, Lithgow-Bertelloni C, Stixrude L, Ritsema J (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth Planet Sci Lett 275:70–79

    Article  Google Scholar 

  • Yu YG, Vinograd VL, Winkler B, Wentzcovitch RM (2013) Phase equilibria of (Mg,Fe)2SiO4 at the Earth’s upper mantle conditions from first-principles studies. Phys Earth Planet Inter 217:36–47

    Article  Google Scholar 

  • Zha CS, Duffy TS, Downs RT, Mao HK, Hemley RJ (1996) Sound velocity and elasticity of single-crystal forsterite to 16 GPa. J Geophys Res 101:17535–17545

    Article  Google Scholar 

  • Zha CS, Duffy TS, Downs RT, Mao HK, Hemley RJ (1998) Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth Planet Sci Lett 159(1):25–33

    Article  Google Scholar 

  • Zhang L (1998) Single crystal hydrostatic compression of (Mg,Mn,Fe,Co)2SiO4 olivines. Phys Chem Miner 25(4):308–312

    Article  Google Scholar 

  • Zhang JS, Dera P, Bass JD (2012) A new high-pressure phase transition in natural Fe-bearing orthoenstatite. Am Mineral 97(7):1070–1074

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (NSF) under Grant EAR 1344942. This work was also partially supported by the Consortium for Materials Properties Research in Earth Sciences (COMPRES) under NSF Cooperative Agreement EAR 11-57758. YH and HS were partially supported by a grant from Carnegie-DOE Alliance Center. Development of the ATREX IDL software is supported under Grant NSF EAR 1440005. Portions of this work were performed at GESCARS (Sector 13), APS, Argonne National Laboratory. GESCARS is supported by the NSF Earth Sciences (EAR-1128799) and Department of Energy (DOE)—Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by DOE under Contract No. DE-AC02-06CH11357. We would like to thank two reviewers for their constructive comments, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin S. Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.S., Hu, Y., Shelton, H. et al. Single-crystal X-ray diffraction study of Fe2SiO4 fayalite up to 31 GPa. Phys Chem Minerals 44, 171–179 (2017). https://doi.org/10.1007/s00269-016-0846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0846-1

Keywords

Navigation