, Volume 33, Issue 1, pp 55–69 | Cite as

Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity

  • Sebastian A. Gerlach


From bibliographic data the biomass correlations (organic dry weight) are constructed for the subsurface layer of a hypothetical 30 m deep silty sand station: 200 μg/ml macrofauna (including 120 μg/ml subsurface deposit feeders), 50 μg/ml meiofauna, 20 μg/ml Foraminifera, 1 μg/ml Ciliata and Flagellata, and 100 μg/ml bacteria. ATP-biomass is discussed.

Meiofauna and Foraminifera contribute with 30 and 12% to the living biomass in the sediment, and it is assumed that their contribution to the food of deposit-feeding macrofauna is of a similar percentage. This is corroborated by productivity estimations.

Bacteria are the main food of deposit feeding macrofauna, meiofauna, and microfauna. From different calculations it becomes evident that the productivity of bacteria in the sediment is far below figures achieved in experimental cultures: the conclusion is that sediment bacteria, in general, do not live under good environmental conditions.

A rather large part of the bacterial population in the sediment seems to be in the stationary phase of life, and only a fraction of the total population exhibits high metabolic rates and rapid duplications. Only these active bacteria are of importance for the breakdown of relatively refractive organic matter in the sediment.

In soft bottom marine sediments where the input of organic matter is higher than the remineralization rate, benthic animals stimulate by their activities and by nutrient cycling the decomposition of detritus via bacteria. Though meiofauna, in principle, feeds upon the same food resource as macrofauna, there is no real competition for food, because meiofaunal animals by their activities and by excreting metabolic end products induce a bacterial productivity which would not be there without them, and feed on it. There are a few examples where more specialized interactions exist between benthic animals and bacteria; these interactions have been termed “gardening”. They could be highly important in the benthic ecosystem.


Foraminifera Bacterial Productivity Meiofauna Silty Sand Benthic Animal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.G., Meadows, P.S.: Bacteria on intertidal sand grains. Hydrobiologia 33, 33–45 (1969)Google Scholar
  2. Ankar, S.: The soft bottom ecosystem of the Northern Baltic Proper with special reference to the macrofauna. Contr. Askö Lab. 19, 1–62 (1977)Google Scholar
  3. Ankar, S., Elmgren, R.: The benthic macro- and meiofauna of the Askö-Landsort Area (Northern Baltic Proper). A stratified random sampling survey. Contr. Askö Lab. 11, 1–115 (1976)Google Scholar
  4. Arntz, W.E., Brunswig, D.: Studies on structure and dynamics of macrobenthos in the Western Baltic carried out by the joint research programme “Interaction Sea-Seabottom” (SFB 95-Kiel). Proc. 10th Eur. Mar. Biol. Symp. (Ostend) 2, 17–42 (1976)Google Scholar
  5. Bacescu, M., Caraion, F.E.: Animaux se nourissant de Foraminifères [in Roumanian]. Comunle Acad. Rep. pop. rom. 6, 551–553 (1956)Google Scholar
  6. Bancroft, K., Paul, E.A., Wiebe, W.J.: The extraction and measurement of adenosine triphosphate from marine sediments. Limnol. Oceanogr. 21, 473–480 (1976)Google Scholar
  7. Barsdate, R.J., Prentki, R.T., Fenchel T.: Phosphorus cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers. Oikos 25, 239–251 (1974)Google Scholar
  8. Berk, S.G., Colwell, R.R., Suall, E.B.: A study of feeding responses to bacterial prey by estuarine ciliates. Trans. Am. Microsc. Soc. 95, 514–520 (1976)Google Scholar
  9. Bodungen, B. von, Bröckel, K. von, Smetacek, V., Zeitzschel, B.: Ecological studies on the plankton in the Kiel Bight. I. Phytoplankton. Merentutkimuslait. Julk. 239, 179–186 (1975)Google Scholar
  10. de Bovee, F., Soyer, J.: Cycle annuel quantitative du meiobenthos des vases terrigènes côtières. Distribution verticale. Vie et Milieu (B) 24, 141–157 (1974)Google Scholar
  11. Cadee, G.C., Hegeman, J.: Distribution of primary production of the benthic microflora and accumulation of organic matter on a tidal flat area, Balgzand, Dutch Wadden Sea. Neth. J. Sea Res. 11, 24–41 (1977)Google Scholar
  12. Christian, R.R., Bancroft, K., Wiebe, W.J.: Distribution of microbial adenosine triphosphate in salt marsh sediments at Sapelo Island, Georgia. Soil Sci. 119, 89–97 (1975)Google Scholar
  13. Cushing, D.H.: Marine ecology and fisheries. Cambridge-London-New York-Melbourne: Cambridge University Press 1975Google Scholar
  14. Elmgren, R.: Baltic benthos communities and the role of the meiofauna. Contr. Askö Lab. 14, 1–31 (1977)Google Scholar
  15. Ernst, W.: ATP als Indikator für die Biomasse mariner Sedimente. Oecologia (Berl.) 5, 56–60 (1970)Google Scholar
  16. Ernst, W., Goerke, H.: Adenosin-5′-triphosphat (ATP) in Sedimenten und Nematoden der nordostatlantischen Tiefsee. »Meteor« Forsch.-Ergebn. (C) 18, 35–42 (1974)Google Scholar
  17. Fenchel, T.: The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated Protozoa. Ophelia 6, 1–182 (1969)Google Scholar
  18. Fenchel, T.: Studies on the decomposition of organic detritus from the Turtle Grass, Thalassia testudineum. Limnol. Oceanogr. 15, 14–20 (1970)Google Scholar
  19. Fenchel, T.: Aspects of decomposer food chains in marine benthos. Verh. Dt. Zool. Ges. 65, 14–23 (1972)Google Scholar
  20. Fenchel, T., Perry, T., Thane, A.: Anaerobiosis and symbiosis with bacteria in free-living ciliates. J. Protozool. 24, 154–163 (1977)Google Scholar
  21. Ferguson, R.L., Murdoch, M.A.: Microbial ATP and organic carbon in sediments of the Newport River Estuary, North Carolina. In: Estuarine research, Vol. 1, Chemistry, biology and the estuarine system (L.E. Cronin, ed.), pp. 229–250. New York-San Francisco-London: Academic Press 1975Google Scholar
  22. Ferguson, R.L., Rublee, P.: Contribution of bacteria to standing crop of coastal plankton. Limnol. Oceanogr. 21, 141–145 (1976)Google Scholar
  23. Gerlach, S.A.: Über einige Nematoden aus der Familie der Desmodoriden. In: Neue Ergebnisse und Probleme der Zoologie (Klatt-Festschrift, W. Herre, ed.), pp. 178–198. Leipzig: Akad. Verlagsanst. 1950Google Scholar
  24. Gerlach, S.A.: On the importance of marine meiofauna for benthos communities. Oecologia (Berl.) 6, 176–190 (1971)Google Scholar
  25. Gerlach, S.A.: Attraction to decaying organisms as a possible cause for patchy distribution of Nematodes in a Bermuda beach. Ophelia 16, 151–165 (1977)Google Scholar
  26. Gerlach, S.A., Schrage, M.: Freilebende Nematoden als Nahrung der Sandgarnele Crangon crangon. Experimentelle Untersuchungen über die Bedeutung der Meiofauna als Nahrung für das marine Makrobenthos. Oecologia (Berl.) 2, 362–375 (1969)Google Scholar
  27. Gerlach, S.A., Schrage, M.: Life cycles in marine meiobenthos. Experiments at various temperatures with Monhystera disjuncta and Theristus pertenuis (Nematoda). Mar. Biol. 9, 274–280 (1971)Google Scholar
  28. Gerlach, S.A., Schrage, M.: Life cycles at low temperatures in some free-living marine nematodes. Veröff. Inst. Meeresforsch. Bremerh. 14, 5–11 (1972)Google Scholar
  29. Goerke, H.: Die Ernährungsweise der Nereis-Arten (Polychaeta, Nereidae) der deutschen Küsten. Veröff. Inst. Meeresforsch. Bremerh. 13, 1–50 (1971)Google Scholar
  30. Goerke, H., Ernst, W.: ATP content of estuarine nematodes: Contributions to the determination of meiofauna biomass by ATP measurements. Proc. 9th Eur. Mar. Biol. Symp. (Oban), pp. 683–691 (1975)Google Scholar
  31. Gomoiu, M.T.: Ecology of subtidal meiobenthos. Smithson. Contr. Zool. 76, 155–160 (1971)Google Scholar
  32. Guille, A., Soyer, J.: Bionomie benthique du plateau continental de la côte catalane française. 8. Macrofaune, et meiofaune, rapports quantitatifs et biocénotiques. Vie et Milieu (B) 24, 301–320 (1974)Google Scholar
  33. Hansen, H.J.: On the sedimentology and the quantitative distribution of living Foraminifera in the northern part of the Øresund. Ophelia 2, 323–331 (1965)Google Scholar
  34. Heip, C., Smol, N.: On the importance of Protohydra leuckarti as a predator of meiobenthic populations. Proc. 10th Eur. Mar. Biol. Symp. (Ostend) 2, 285–296 (1976)Google Scholar
  35. Hodson, R.E., Holm-Hansen, O., Azam, F.: Improved methodology for ATP determination in marine environments. Mar. Biol. 34, 143–149 (1976)Google Scholar
  36. Holm-Hansen, O.: Determination of total microbial biomass by measurement of adenosine triphosphate. In: Estuarine microbial ecology (L.H. Stevenson, R.R. Colwell, eds.), pp. 73–89. Columbia: Univ. South Carolina Press 1973Google Scholar
  37. Hopper, B.E., Cefalu, R.C.: Free-living marine nematodes from Biscayne Bay, Florida. V. Stilbonematinae: Contributions to the taxonomy and morphology of the genus Eubostrichus Greeff and related genera. Trans. Am. Microsc. Soc. 92, 578–591 (1973)Google Scholar
  38. Hopper, B.E., Fell, J.W., Cefalu, R.C.: Effect of temperature on life cycles of nematodes associated with the mangrove (Rhizophora mangle) detrital system. Mar. Biol. 23, 293–296 (1973)Google Scholar
  39. Hylleberg, J.: Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia 14, 113–117 (1975)Google Scholar
  40. Johannes, R.E.: Influence of marine protozoa on nutrient regeneration. Limnol. Oceanogr. 10, 434–442 (1965)Google Scholar
  41. Juario, J.V.: Nematode species composition and seasonal fluctuations of a sublittoral meiofauna community in the German Bight. Veröff. Inst. Meeresforsch. Bremerh. 15, 283–337 (1975)Google Scholar
  42. Lasserre, P., Renaud-Mornant, J., Castel, J.: Metabolic activities of meiofauna communities in a semi-enclosed lagoon. Possibilities of trophic competition between meiofauna and mugilid fish. Proc. 10th Eur. Mar. Biol. Symp. (Ostend) 2, 393–414 (1976)Google Scholar
  43. Lee, J.J., Tenore, K.R., Tietjen, J.H., Mastropaolo, C.: An experimental approach toward understanding the role of meiofauna in a detritus-based marine food web. Proc. 4th Nat. Symp. Radioecology, Radioecology and Energy Resources (C.E. Cushing, ed.), pp. 140–147. Stroudsburg, Pa.: Dowden, Hutchinson and Ross 1976Google Scholar
  44. Lee, J.J., Tietjen, J.H., Saks, N.M., Ross, G.G., Rubin, H., Muller, W.A.: Educing and modeling the functional relationships within sublittoral salt-marsh aufwuchs communities-inside one of the black boxes. Estuarine Research, Vol. 1: Chemistry, biology and the estuarine system (L.E. Cronin, ed.), pp. 710–734. New York-San Francisco-London: Academic Press 1975Google Scholar
  45. Lee, J.J., Tietjen, J.H., Mastropaolo, C., Rubin, H.: Food quality and the heterogeneous spatial distribution of meiofauna. Helgoländer Wiss. Meeresunters. 30, 272–282 (1977)Google Scholar
  46. Lie, U.: A quantitative study of benthic infauna in Puget Sound, Washington, USA, in 1963–1964. Fisk Dir. Skr. Ser. Havundersök. 14, 229–556 (1968)Google Scholar
  47. Lopez, G.R., Levinton, J.S., Slobodkin, L.B.: The effect of grazing by the detritivore Orchestia grillus on Spartina litter and its associated microbial community. Oecologia (Berl.) 30, 111–127 (1977)Google Scholar
  48. McIntyre, A.D.: Ecology of marine meiobenthos. Biol. Rev. 44, 245–290 (1969)Google Scholar
  49. McIntyre, A.D.: Control factors on meiofauna populations. Thalassia Jugosl. 7, 209–215 (1971)Google Scholar
  50. McIntyre, A.D., Eleftheriou, A.: The bottom fauna of a flatfish nursery ground. J. Mar. Biol. Ass. U.K. 48, 113–142 (1968)Google Scholar
  51. McIntyre, A.D., Munroe, A.S., Steele, J.H.: Energy flow in a sand ecosystem. In: Marine food chains (J.H. Steele, ed.), pp 19–31. Edinburgh: Oliver and Boyd 1969Google Scholar
  52. McIntyre, A.D., Murison, D.J.: The meiofauna of a flatfish nursery ground. J. Mar. Biol. Ass. U.K. 53, 93–118 (1973)Google Scholar
  53. Marshall, N.: Food transfer through the lower trophic levels of the benthic environment. In: Marine food chains (J.H. Steele, ed.), pp. 52–56. Edinburgh: Oliver and Boyd 1970Google Scholar
  54. Mercer, E.K., Cairns, E.J.: Food consumption of the free-living aquatic nematode Pelodera chitwoodi. J. Nematol. 5, 201–208 (1973)Google Scholar
  55. Moriarty, D.J.W.: Improved method using muramic acid to estimate biomass of bacteria in sediments. Oecologia (Berl.) 26, 317–323 (1976)Google Scholar
  56. Moriarty, D.J.W.: Quantification of carbon, nitrogen and bacterial biomass in the food of some penaeid prawns. Aust. J. Mar. Freshwat. Res. 28, 113–118 (1977)Google Scholar
  57. Odum, W.E.: Utilization of the direct grazing and plant detritus food chains by the striped mullet Mugil cephalus. In: Marine food chains (J.H. Steele ed.), pp. 222–240. Edinburgh: Oliver and Boyd 1970Google Scholar
  58. Ott, J.A., Fuchs, B., Fuchs, R., Malasek, A.: Observations on the biology of Callianassa stebbingi Borradaile and Upogebia litoralis Risso and their effect upon the sediment. Senckenberg. Marit. 8, 61–79 (1976)Google Scholar
  59. Ott, J., Schiemer, F.: Respiration and anaerobiosis of free living nematodes from marine and limnic sediments. Netherl. J. Sea Res. 7, 233–243 (1973)Google Scholar
  60. Paerl, H.W., Williams, N.J.: The relation between ATP and microbial biomass in diverse aquatic ecosystems. Int. Rev. Ges. Hydrobiol. 61, 659–664 (1976)Google Scholar
  61. Pamatmat, M., Skjoldal, H.R.: Dehydrogenase activity and adenosine triphosphate concentration of marine sediments in Lindåspollene, Norway. Sarsia 56, 1–11 (1974)Google Scholar
  62. Riemann, F., Schrage, M.: On the importance of aquatic nematodes: sedimentological and ecological aspects of the continuous mucus secretion. Oecologia (Berl.) (in press, 1978)Google Scholar
  63. Sikora, J.P., Sikora, W.B., Erkenbrecher, C.W., Coull, B.C.: Significance of ATP, carbon, and caloric content of meiobenthic nematodes in partitioning benthic biomass. Mar. Biol. 44, 7–14 (1977)Google Scholar
  64. Soyer, J.: Bionomie benthique du plateau continental de la côte catalane française. V. Densités et biomasses du meiobenthos. Vie et Milieu (B) 22, 351–424 (1971)Google Scholar
  65. Stephens, K., Sheldon, R.W., Parsons, T.R.: Seasonal variations in the availability of food for benthos in a coastal environment. Ecology 48, 852–855 (1967)Google Scholar
  66. Stripp, K.: Die Assoziationen des Benthos in der Helgoländer Bucht. Veröff. Inst. Meeresforsch. Bremerh. 12, 95–141 (1969)Google Scholar
  67. Tenore, K.R., Tietjen, J.H., Lee, J.J.: Effect of meiofauna on incorporation of aged eelgrass, Zostera marina, detritus by the polychaete Nephtys incisa. J. Fish. Res. Bd Can. 34, 563–567 (1977)Google Scholar
  68. Thiel, H.: The size structure of the deep-sea benthos. Int. Rev. Ges. Hydrobiol. 60, 575–606 (1975)Google Scholar
  69. Tietjen, J.H., Lee, J.J.: Life cycles of marine nematodes. Influence of temperature and salinity on the development of Monhystera denticulata. Oecologia (Berl.) 10, 167–176 (1972)Google Scholar
  70. Tietjen, J.H., Lee, J.J.: Life history and feeding habits of the marine nematode, Chromadora macrolaimoides. Oecologia (Berl.) 12, 303–314 (1973)Google Scholar
  71. Tietjen, J.H., Lee, J.J.: Life histories of marine nematodes. Influence of temperature and salinity on the reproductive potential of Chromadorina germanica Bütschli. Mikrofauna Meeresboden 61, 263–270 (1977)Google Scholar
  72. Tunnicliffe, V., Risk, M.J.: Relationships between the bivalve Macoma balthica and bacteria in intertidal sediments, Minas Basin, Bay of Fundy. J. Mar. Res. 35, 499–507 (1977)Google Scholar
  73. Warwick, R.M., Price, R.: Macrofauna production in an estuarine mud flat. J. Mar. Biol. Ass. U.K. 55, 1–18 (1975)Google Scholar
  74. Wefer, G., Lutze, G.F.: Benthic Foraminifera biomass production in the Western Baltic. Kieler Meeresforsch. (Sonderheft) 3, 76–81 (1977)Google Scholar
  75. Welsh, B.L.: The role of grass shrimp, Palaeomonetes pugio, in a tidal marsh ecosystem. Ecology 56, 513–530 (1975)Google Scholar
  76. Wieser, W.: Eine ungewöhnliche Assoziation zwischen Blaualgen und freilebenden marinen Nematoden. Öst. Bot. Z. 106, 81–87 (1959)Google Scholar
  77. Zobell, C.E., Feltham, C.B.: Bacteria as food for certain marine invertebrates. J. Mar. Res. 1, 312–327 (1938)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Sebastian A. Gerlach
    • 1
  1. 1.Institut für MeeresforschungBremerhaven 1Federal Republic of Germany

Personalised recommendations