Skip to main content
Log in

Segmental organisation of the tail region in the embryo of Drosophila melanogaster

A blastoderm fate map of the cuticle structures of the larval tail region

  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The segmental organisation of the tail region in the embryo of Drosophila melanogaster, which is defined here as the epidermal region posterior to the boundary between abdominal segments A7 and A8, has been investigated by means of ultraviolet (UV) laser fate-mapping and phenotypic analysis of embryonic mutants that alter the segmental pattern of the larval cuticle. Wild-type embryos were irradiated in the presumptive tail region with a UV- laser microbeam of 20 μm diameter at the blastoderm stage. The ensuing defects were scored in the cuticle pattern of the tail region of the first-instar larva, which is described in detail in this paper. The spatial distribution of defect frequencies was used to construct a blastoderm fate-map of the cuticle structures of the larval tail region. The segmental origin of the larval tail structures was inferred from the phenotypic analysis of segmentation and homoeotic mutants, which revealed pattern repetition throughout the embryonic tail region corresponding to four segment anlagen, A8 to A11, and a non-segmental telson. These data enabled the transformation of the blastoderm fate-map of cuticle structures into a map of tail segment anlagen. The tail anlage occupies about 10% of the egg length (EL), bounded by segment A7 anteriorly at 20% EL and by the proctodaeum posteriorly at 10% EL, as measured from the posterior pole. The anlagen of segments A8 and A9 appear to be narrow dorso-ventral strips of blastoderm cells similar to the anlagen of the trunk segments, whereas the anlagen of A10 and A11 are smaller and produce fewer pattern elements. The telson is represented in the cuticle by the tuft which derives from a very dorsal posterior position. The antero-posterior axis of the entire tail anlage appears curved upward posteriorly. Differences in the mode of development between tail and trunk segments are discussed, as are similarities of larval and imaginal tail development in Drosophila. Comparison with tail development in other insects suggests that, during evolution, the transition from semi-long-germ to long-germ development modified the organisation of the tail region without affecting its primary subdivision into metameric units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DT (1972a) The development of hemimetabolous insects. In: Waddington CH, Counce SJ (eds) Developmental systems: insects, vol 1. Academic Press, New York, pp 96–164

    Google Scholar 

  • Anderson DT (1972b) The development of holometabolous insects. In: Waddington CH, Counce SJ (eds) Developmental systems: insects, vol 1. Academic Press, New York, pp 165–241

    Google Scholar 

  • Anderson KV, Nüsslein-Volhard C (1984) Genetic analysis of dorsal-ventral embryonic pattern in Drosophila. In: Malacinski GM, Bryant SV (eds) Pattern formation. Macmillan Publishing, New York, pp 269–289

    Google Scholar 

  • Campos-Ortega JA (1983) Topological specificity of phenotype expression of neurogenic mutations in Drosophila. Wilhelm Roux's Arch 192:317–326

    Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Carroll SB, Scott MP (1985) Localisation of the fushi tarazu protein during Drosophila embryogenesis. Cell 43:47–57

    Google Scholar 

  • Dambly-Chaudiere C, Ghysen A (1986) The sense organs in the Drosophila larva and their relation to the embryonic pattern of sensory neurons. Roux's Arch Dev Biol 195:222–228

    Google Scholar 

  • Denell RE, Frederick RD (1983) Homoeosis in Drosophila: a description of the Polycomb lethal syndrome. Dev Biol 97:34–47

    Google Scholar 

  • DiNardo S, Kuner JM, Theis J, O'Farrell PH (1985) Development of embryonic pattern in Drosophila melanogaster as revealed by accumulation of the nuclear engrailed protein. Cell 43:59–69

    Google Scholar 

  • Doyle HJ, Harding K, Hoey T, Levine M (1986) Transcripts encoded by a homeo box gene are restricted to dorsal tissues of Drosophila embryos. Nature (Lond) 323:76–79

    Google Scholar 

  • Dübendorfer A (1971) Untersuchungen zum Anlagenplan und Determinationszustand der weiblichen Genital- und Analprimordien von Musca domestica L. Wilhelm Roux's Arch 168:142–168

    Google Scholar 

  • Dübendorfer K, Nöthiger R (1982) A clonal analysis of cell lineage and growth in the male and female genital disc of Drosophila melanogaster. Wilhelm Roux's Arch 191:42–55

    Google Scholar 

  • Emmert W (1972) Entwicklungsleistungen abdominaler Imaginalscheiben von Calliphora erythrocephala (Insecta, Diptera). Experimentelle Untersuchungen zur Morphologie des Abdomens. Wilhelm Roux's Arch 169:87–133

    Google Scholar 

  • Fjose A, McGinnis WJ, Gehring WJ (1985) Isolation of a homeo box-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature (Lond) 313:284–289

    Google Scholar 

  • Ghysen A, Dambly-Chaudiere C, Aceves E, Jan L-Y, Jan Y-N (1986) Sensory neurons and peripheral pathways in Drosophila embryos. Roux's Arch Dev Biol 195:281–289

    Google Scholar 

  • Hafen E, Kuroiwa A, Gehring WJ (1984) Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila embryonic development. Cell 37:833–841

    Google Scholar 

  • Hartenstein V, Campos-Ortega JA (1984) Early neurogenesis in wild-type Drosophila melanogaster. Wilhelm Roux's Arch 193:308–325

    Google Scholar 

  • Hartenstein V, Campos-Ortega JA (1985) Fate-mapping in wild-type Drosophila melanogaster. I. The spatio-temporal pattern of embryonic cell divisions. Wilhelm Roux's Arch 194:181–195

    Google Scholar 

  • Hartenstein V, Technau GM, Campos-Ortega JA (1985) Fate-mapping in wild-type Drosophila melanogaster. III. A fate map of the blastoderm. Wilhelm Roux's Arch 194:213–216

    Google Scholar 

  • Hertweck H (1931) Anatomie und Variabilät des Nervensystems und der Sinnesorgane von Drosophila melanogaster Meigen. Z Wiss Zool 139:559–663

    Google Scholar 

  • Horsfall WR, Ronquillo MC (1970) Genesis of the reproductive system of mosquitoes. II. Male of Aedes Stimulans (Walker). J Morphol 131:329–357

    Google Scholar 

  • Ingham PW, Howard KR, Ish-Horowicz D (1985a) Transcription pattern of the Drosophila segmentation gene hairy. Nature (Lond) 318:439–445

    Google Scholar 

  • Ingham P, Martinez-Arias A, Lawrence PA, Howard K (1985b) Expression of engrailed in the parasegment of Drosophila. Nature (Lond) 317:634–636

    Google Scholar 

  • Janning W, Labhart C, Nöthiger R (1984) Cell lineage restrictions in the genital disc of Drosophila revealed by Minute gynandromorphs. Wilhelm Roux's Arch 192:337–346

    Google Scholar 

  • Jürgens G (1985) A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature (Lond) 316:153–155

    Google Scholar 

  • Jürgens G, Wieschaus E, Nüsslein-Volhard C, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. II. Zygotic loci on the third chromosome. Wilhelm Roux's Arch 193:283–295

    Google Scholar 

  • Jürgens G, Lehmann R, Schardin M, Nüsslein-Volhard C (1986) The segmental organisation of the head in the embryo of Drosophila melanogaster. A blastoderm fate map of the cuticle structures of the larval head. Roux's Arch Dev Biol 195:359–377

    Google Scholar 

  • Kankel DR, Ferrus A, Garen SH, Harte PJ, Lewis PE (1980) The structure and development of the nervous system. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2d. Academic Press, London New York San Francisco, pp 295–368

    Google Scholar 

  • Karch F, Weiffenbach B, Peifer M, Bender W, Duncan I, Celniker S, Crosby M, Lewis EB (1985) The abdominal region of the bithorax complex. Cell 43:81–96

    Google Scholar 

  • Kilchherr F, Baumgartner S, Bopp D, Frei E, Noll M (1986) Isolation of the paired gene of Drosophila and its spatial expression during early embryogenesis. Nature (Lond) 321:493–499

    Google Scholar 

  • Kobayashi Y, Ando H (1981) The embryonic development of the primitive moth, Neomicropteryx nipponensis Issiki (Lepidoptera, Micopterygidae): morphogenesis of the embryo by external observation. J Morphol 169:49–59

    Google Scholar 

  • Kobayashi Y, Ando H (1983) Embryonic development of the alimentary canal and ectodermal derivatives in the primitive moth, Neomicropteryx nipponensis Issiki (Lepidoptera, Micropterygidae). J Morphol 176:289–314

    Google Scholar 

  • Kobayashi Y, Ando H (1984) Mesodermal organogenesis in the embryo of the primitive moth, Neomicropteryx nipponensis Issiki (Lepidoptera, Micropterygidae). J Morphol 181:29–47

    Google Scholar 

  • Kornberg T, Siden I, O'Farrell P, Simon M (1985) The engrailed locus of Drosophila: in situ localization of transcripts reveals compartment-specific expression. Cell 40:45–53

    Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature (Lond) 276:565–570

    Google Scholar 

  • Lohs-Schardin M, Cremer C, Nüsslein-Volhard C (1979) A fate map for the larval epidermis of Drosophila melanogaster: localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev Biol 73:239–255

    Google Scholar 

  • Madhavan MM, Schneiderman HA (1977) Histological analysis of the dynamics of growth of imaginal discs and histoblast nests during the larval development of Drosophila melanogaster. Wilhelm Roux's Arch 183:269–305

    Google Scholar 

  • Martinez-Arias A, Lawrence PA (1985) Parasegments and compartments in the Drosophila embryo. Nature (Lond) 313:639–642

    Google Scholar 

  • Matsuda R (1976) Morphology and evolution of the insect abdomen. Pergamon Press, Oxford, New York

    Google Scholar 

  • Nöthiger R, Dübendorfer A, Epper R (1977) Gynandromorphs reveal two separate primordia for male and female genitalia in Drosophila melanogaster. Wilhelm Roux's Arch 181:367–373

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature (Lond) 287:795–801

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E, Jürgens G (1982) Segmentierung bei Drosophila: Eine genetische Analyse. Verh Dtsch Zool Ges 91–104

  • Nüsslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Wilhelm Roux's Arch 193:267–282

    Google Scholar 

  • Nüsslein-Volhard C, Kluding H, Jürgens G (1985) Genes affecting the segmental subdivision of the Drosophila embryo. Cold Spring Harbor Symp Quant Biol 50:145–154

    Google Scholar 

  • Ronquillo MC, Horsfall WR (1969) Genesis of the reproductive system of mosquitoes. I. Female of Aetes Stimulans (Walker). J Morphol 129:249–280

    Google Scholar 

  • Rottmar B (1966) Über Züchtung, Diapause und postembryonale Entwicklung von Panorpa communis L. Zool Jb Anat 83:497–570

    Google Scholar 

  • Rühle H (1932) Das larvale Tracheensystem von Drosophila melanogaster (Meigen) und seine Variabilität. Z Wiss Zool 141:159–245

    Google Scholar 

  • Sanchez-Herrero E, Vernos I, Marco R, Morata G (1985) Genetic organization of Drosophila bithorax complex. Nature (Lond) 313:108–113

    Google Scholar 

  • Sander K (1983) The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin BC, Holder N, Wylie CC (eds) Development and evolution. Cambridge University Press, pp 137–159

  • Sato T, Denell RE (1986) Segmental identity of caudal cuticular features of Drosophila melanogaster larvae and its control by the bithorax complex. Dev Biol 116:78–91

    Google Scholar 

  • Schüpbach T, Wieschaus E, Nöthiger R (1978) The embryonic organization of the genital disc studied in genetic mosaics of Drosophila melanogaster. Wilhelm Roux's Arch 185:249–270

    Google Scholar 

  • Seidel F (1935) Der Anlagenplan im Libellenei, zugleich eine Untersuchung über die allgemeinen Bedingungen für defekte Entwicklung und Regulation bei dotterreichen Eiern. Wilhelm Roux's Arch 132:671–751

    Google Scholar 

  • Singh RN, Singh K (1984) Fine structure of the sensory organs of Drosophila melanogaster Meigen larva (Diptera: Drosophilidae). Int J Insect Morphol Embryol 13:255–273

    Google Scholar 

  • Strecker TR, Kongsuwan K, Lengyel JA, Merriam JR (1986) The zygotic mutant tailless affects the anterior and posterior ectodermal regions of the Drosophila embryo. Dev Biol 113:64–76

    Google Scholar 

  • Strahl G (1981) A gene product required for correct initiation of segmental determination in Drosophila.. Nature (Lond) 293:36–41

    Google Scholar 

  • Struhl G (1984) Splitting the bithorax complex of Drosophila. Nature (Lond) 308:454–457

    Google Scholar 

  • Struhl G, White RAH (1985) Regulation of the Ultrabithorax gene of Drosophila by other bithorax complex genes. Cell 43:507–519

    Google Scholar 

  • Szabad J, Schüpbach T, Wieschaus E (1979) Cell lineage and development in the larval epidermis of Drosophila melanogaster. Dev Biol 73:256–271

    Google Scholar 

  • Technau GM, Campos-Ortega (1985) Fate-mapping in wild-type Drosophila melanogaster. II. Injections of horseradish peroxidase in cells of the early gastrula stage. Wilhelm Roux's Arch 194:196–212

    Google Scholar 

  • Tiong SYK, Bone LM, Whittle JRS (1985) Recessive lethal mutations within the bithorax-complex in Drosophila. Mol Gen Genet 200:335–342

    Google Scholar 

  • Turner FR, Mahowald AP (1977) Scanning electron microscopy of Drosophila melanogaster embryogenesis. II. Gastrulation and segmentation. Dev Biol 57:403–116

    Google Scholar 

  • Turner FR, Mahowald AP (1979) Scanning electron microscopy of Drosophila melanogaster embryogenesis. III. Formation of the head and caudal segments. Dev Biol 68:96–109

    Google Scholar 

  • Underwood EM, Turner FR, Mahowald AP (1980) Analysis of cell movements and fate mapping during early embryogenesis in Drosophila melanogaster. Dev Biol 74:286–301

    Google Scholar 

  • Van der Meer J (1977) Optical clean and permanent whole mount preparations for phase contrast microscopy of cuticular structures of insect larvae. Dros Inf Serv 52:160

    Google Scholar 

  • Wieschaus E, Nüsslein-Volhard C, Jürgens G (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. III. Zygotic loci on the X chromosome and fourth chromosome. Wilhelm Roux's Arch 193:296–307

    Google Scholar 

  • Whittle JRS, Tiong SYK, Sunkel CE (1986): The effect of lethal mutations and deletions within the bithorax complex upon the identity of caudal metameres in the Drosophila embryo. J Embryol Exp Morphol 93:153–166

    Google Scholar 

  • Zusman SB, Wieschaus EF (1985) Requirements for zygotic gene activity during gastrulation in Drosophila melanogaster. Dev Biol 111:359–371

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jürgens, G. Segmental organisation of the tail region in the embryo of Drosophila melanogaster . Roux's Arch Dev Biol 196, 141–157 (1987). https://doi.org/10.1007/BF00376308

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376308

Key words

Navigation