Skip to main content
Log in

The mechanisms determining bristle pattern in Drosophila melanogaster

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Macrochaetes (large bristles) are arranged on the drosophila head and notum in a specific bristle pattern. The number and positions of the macrochaetes forming the pattern are important species-specific characteristics, which are determined by a strict positioning of the proneural clusters in the in the imaginal disc ectoderm in the third instar larvae and prepupae. In turn, the positioning of proneural clusters depends on the distribution of the so-called prepattern factors, responsible for the bristle prepatterning. The current concept identifies the prepattern factors with the transcription factors that initiate the local expression of the achaete-scute complex (AS-C) genes. Expression of these genes confined to certain regions of the ectoderm is the particular factor that determines the macrochaete pattern on the adult fly body. The review considers and systematizes the data on establishment of the prepatterning as the final stage in the functioning of hierarchically organized molecular genetic system resulting in the local expression of AS-C genes in the ectoderm of imaginal discs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldaz, S., Morata, G., and Azpiazu, N., The Paxhomeobox gene eyegone is involved in the subdivision of the thorax of Drosophila, Development, 2003, vol. 130, pp. 4473–4482.

    Article  CAS  PubMed  Google Scholar 

  • Alonso, M.C. and Cabrera, C.V., The achaete-scute gene complex of Drosophila melanogaster comprises four homologous genes, EMBO J., 1988, vol. 7, pp. 2585–2591.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ayyar, S., Pistillo, D., Calleja, M., et al., NF-kappaB/Relmediated regulation of the neural fate in Drosophila, PLoS One, 2007, vol. 2, p. e1178.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ayyar, S., Negre, B., Simpson, P., et al., An arthropod cisregulatory element functioning in sensory organ precursor development dates back to the Cambria, BMC Biol., 2010, vol. 24, p. 127.

    Article  Google Scholar 

  • Barrio, R., de Celis, J.F., Bolshakov, S., et al., Identification of regulatory regions driving the expression of the Drosophila spalt complex at different developmental stages, Dev. Biol., 1999, vol. 215, pp. 33–47.

    Article  CAS  PubMed  Google Scholar 

  • Biryukova, I. and Heitzler, P., The Drosophila lim-homeo domain protein Islet antagonizes pro-neural cell specification in the peripheral nervous system, Dev. Biol., 2005, vol. 288, pp. 559–570.

    Article  CAS  PubMed  Google Scholar 

  • Bronstein, R., Levkovitz, L., Yosef, N., et al., Transcriptional regulation by CHIP/LDB complexes, PLoS Genetics, 2010, vol. 6, p. e1001063.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cadigan, K.M., Jou, A.D., and Nusse, R., Wingless blocks bristle formation and morphogenetic furrow progression in the eye through repression of Daughterless, Development, 2002, vol. 129, pp. 3393–3402.

    CAS  PubMed  Google Scholar 

  • Calleja, M., Herranz, H., Estella, C., et al., Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila, Development, 2000, vol. 127, pp. 3971–3980.

    CAS  PubMed  Google Scholar 

  • Calleja, M., Renaud, O., Usui, K., et al., How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila, Gene, 2002, vol. 292, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Campuzano, S., Carramolino, L., Cabrera, C.V., et al., Molecular genetics of the achaete-scute gene complex of D. melanogaster, Cell, 1985, vol. 40, pp. 327–338.

    Article  CAS  PubMed  Google Scholar 

  • Campuzano, S., Balcells, L., Villares, R., et al., Excess function Hairy-wing mutations caused by gypsy and copia insertion within structural genes of the achaetescute locus of Drosophila, Cell, 1986, vol. 44, pp. 303–312.

    Article  CAS  PubMed  Google Scholar 

  • de Celis, J.F., Barrio, R., and Kafatos, F.C., Regulation of the spalt/spalt-related gene complex and its function during sensory organ development in the Drosophila thorax, Development, 1999, vol. 126, pp. 2653–2662.

    PubMed  Google Scholar 

  • Chanas, G., Lavrov, S., Iral, F., et al., Engrailed and polyhomeotic maintain posterior cell identity through cubitus-interruptus regulation, Dev. Biol., 2004, vol. 272, pp. 522–535.

    Article  CAS  PubMed  Google Scholar 

  • Crick, F.H. and Lawrence, P.A., Compartments and polyclones in insect development, Science, 1975, vol. 189, pp. 340–347.

    Article  CAS  PubMed  Google Scholar 

  • Cubadda, Y., Heitzler, P., Ray, R.P., et al., u-shaped encodes a zinc finger protein that regulates the proneural genes achaete and scute during the formation of bristles in Drosophila, Genes Dev., 1997, vol. 11, pp. 3085–3095.

    Article  Google Scholar 

  • Cubas, P., de Celis, J.F., Campuzano, S., et al., Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc, Genes Dev., 1991, vol. 5, pp. 996–1008.

    Article  CAS  PubMed  Google Scholar 

  • Culi, J. and Modolell, J., Proneural gene self-stimulation in neural precursors: an essential mechanism for sense organ development that is regulated by Notch signaling, Genes Dev., 1998, vol. 12, pp. 2036–2047.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Culi, J., Martin-Blanco, E., and Modolell, J., The EGF receptor and N signalling pathways act antagonistically in Drosophila mesothorax bristle patterning, Development, 2001, vol. 128, pp. 996–1008.

    Google Scholar 

  • Culi, J. and Modolell, J., Proneural gene self-stimulation in neural precursors: an essential mechanism for sense organ development that is regulated by Notch signaling, Genes Dev., 1998, vol. 12, pp. 2036–2047.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubinin, N.P., Allelomorphentreppen bei Drosophila melanogaster, Biol. Zbl., 1929, vol. 49, pp. 328–339.

    Google Scholar 

  • Dubinin, N.P., Step-allelomorphism and the theory of centres of the gene achaete-scute, J. Genet., 1932, vol. 26, pp. 37–58.

    Article  Google Scholar 

  • Escudero, L.M., Caminero, E., Schulze, K.L., et al., Charlatan, a Zn-finger transcription factor, establishes a novel level of regulation of the proneural achaete/scute genes of Drosophila, Development, 2005, vol. 132, pp. 1211–1222.

    Article  CAS  PubMed  Google Scholar 

  • Fromental-Ramain, C., Vanolst, L., Delaporte, C., et al., Pannier encodes two structurally related isoforms that are differentially expressed during Drosophila development and display distinct functions during thorax patterning, Mech. Dev., 2008, vol. 125, pp. 43–57.

    Article  CAS  PubMed  Google Scholar 

  • Fromental-Ramain, C., Taquet, N., and Ramain, P., Transcriptional interactions between the pannier isoforms and the cofactor U-shaped during neural development in Drosophila, Mech. Dev., 2010, vol. 127, pp. 442–457.

    Article  CAS  PubMed  Google Scholar 

  • García-Bellido, A., Genetic control of wing disc development in Drosophila, Ciba Found. Symp., 1975, vol. 0(29), pp. 161–182.

    PubMed  Google Scholar 

  • García-Bellido, A., The cellular and genetic bases of organ size and shape in Drosophila, Int. J. Dev. Biol., 2009, vol. 53, pp. 1291–1303.

    Article  PubMed  Google Scholar 

  • García-Bellido, A. and de Celis, J.F., The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development, Genetics, 2009, vol. 182, pp. 631–639.

    Article  PubMed Central  PubMed  Google Scholar 

  • Giagtzoglou, N., Alifragis, P., Koumbanakis, K.A., et al., Two modes of recruitment of E(spl) repressors onto target genes, Development, 2003, vol. 130, pp. 259–270.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Skarmeta, J.L., Rodriguez, I., Martinez, C., et al., Cis-regulation of achaete and scute: shared enhancerlike elements drive their coexpression in proneural clusters of the imaginal discs, Genes Dev., 1995, vol. 9, pp. 2598–2608.

    Article  Google Scholar 

  • Gómez-Skarmeta, J.L., Diez del Corral, R., de la CalleMustienes, E., et al., araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes, Cell, 1996, vol. 85, pp. 95–105.

    Article  PubMed  Google Scholar 

  • Gómez-Skarmeta, J.L., Campuzano, S., and Modolell, J., Half a century of neural prepatterning: the story of a few bristles and many genes, Nat. Rev. Neurosci., 2003, vol. 4, pp. 587–598.

    Article  PubMed  Google Scholar 

  • Haenlin, M., Cubadda, Y., Blondeau, F., et al., Transcriptional activity of pannier is regulated negatively by heterodimerization of the GATA DNA-binding domain with a cofactor encoded by the u-shaped gene of Drosophila, Genes Dev., 1997, vol. 11, pp. 3096–3108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hannon, R., Evans, T., Felsenfeld, G., et al., Structure and promoter activity of the gene for the erythroid transcription factor GATA-1, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 3004–3008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heitzler, P., Vanolst, L., Biryukova, I., et al., Enhancerpromoter communication mediated by Chip during Pannier-driven proneural patterning is regulated by Osa, Genes Dev., 2003, vol. 17, pp. 591–596.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Held, L.I., Jr., Imaginal Discs: The Genetic and Cellular Logic of Pattern Formation, Cambridge: Cambridge University Press, 2002.

    Book  Google Scholar 

  • Ikmi, A., Netter, S., and Coen, D., Prepatterning the Drosophila notum: the three genes of the iroquois complex play intrinsically distinct roles, Dev. Biol., 2008, vol. 317, pp. 634–648.

    Article  CAS  PubMed  Google Scholar 

  • Jafar-Nejad, H., Acar, M., Nolo, R., et al., Senseless acts as a binary switch during sensory organ precursor selection, Genes Dev., 2003, vol. 17, pp. 2966–2978.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joshi, M., Buchanan, K.T., Shroff, S., et al., Delta and Hairy establish a periodic prepattern that positions sensory bristles in Drosophila legs, Dev. Biol., 2006, vol. 293, pp. 64–76.

    Article  CAS  PubMed  Google Scholar 

  • Kehl, B.T., Cho, K.O., and Choi, K.W., mirror, a Drosophila homeobox gene in the Iroquois complex, is required for sensory organ and alula formation, Development, 1998, vol. 125, pp. 1217–1227.

    CAS  PubMed  Google Scholar 

  • Layalle, S., Volovitch, M., Mugat, B., et al., Engrailed homeoprotein acts as a signaling molecule in the developing fly, Development, 2011, vol. 138, pp. 2315–2323.

    Article  CAS  PubMed  Google Scholar 

  • Leyns, L., Dambly-Chaudiere, C., and Ghysen, A., Two different sets of cis elements regulate scute to establish two different sensory patterns, Roux’s Arch. Dev. Biol., 1989, vol. 198, pp. 227–232.

    Article  Google Scholar 

  • Leyns, L., Gomez-Skarmeta, J.L., and Dambly-Chaudiere, C., iroquois: a prepattern gene that controls the formation of bristles on the thorax of Drosophila, Mech. Dev., 1996, vol. 59, pp. 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Matthews, J.M. and Visvader, J.E., LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins, EMBO Rep., 2003, vol. 4, pp. 1132–1137.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Meyel, D.J., O’Keefe, D.D., Jurata, L.W., et al., Chip and apterous physically interact to form a functional complex during Drosophila development, Mol. Cell, 1999, vol. 4, pp. 259–265.

    Article  PubMed  Google Scholar 

  • Modolell, J. and Campuzano, S., The achaete-scute complex as an integrating device, Int. J. Dev. Biol., 1998, vol. 42, pp. 275–282.

    CAS  PubMed  Google Scholar 

  • de Navascués, J. and Modolell, J., The pronotum LIM-HD gene tailup is both a positive and a negative regulator of the proneural genes achaete and scute of Drosophila, Mech. Dev., 2010, vol. 127, pp. 393–406.

    Article  PubMed  Google Scholar 

  • de Navascués, J. and Modolell, J., tailup, a LIM-HD gene, and Iro-C cooperate in Drosophila dorsal mesothorax specification, Development, 2007, vol. 134, pp. 1779–1788.

    Article  PubMed  Google Scholar 

  • Nishioka, N., Nagano, S., Nakayama, R., et al., Ssdp1 regulates head morphogenesis of mouse embryos by activating the Lim1-Ldb1 complex, Development, 2005, vol. 135, pp. 2535–2546.

    Article  Google Scholar 

  • Ohsako, S., Hyer, J., Panganiban, G., et al., hairy function as a DNA-binding helix-loop-helix repressor of Drosophila sensory organ formation, Genes Dev., 1994, vol. 8, pp. 2743–2755.

    Article  CAS  PubMed  Google Scholar 

  • Powell, L.M., Zur Lage, P.I., Prentice, D.R., et al., The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites, Mol. Cell Biol., 2004, vol. 24, pp. 9517–9526.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramain, P., Heitzler, P., Haenlin, M., et al., Pannier, a negative regulator of achaete and scute in Drosophila, encodes a zinc finger protein with homology to the vertebrate transcription factor GATA-1, Development, 1993, vol. 119, pp. 1277–1291.

    CAS  PubMed  Google Scholar 

  • Ramain, P., Khechumian, R., Khechumian, K., et al., Interactions between chip and the achaete/scutedaughterless heterodimers are required for pannierdriven proneural patterning, Mol. Cell, 2000, vol. 6, pp. 781–790.

    Article  CAS  PubMed  Google Scholar 

  • Reeves, N. and Posakony, J.W., Genetic programs activated by proneural proteins in the developing Drosophila PNS, Dev. Cell, 2005, vol. 8, pp. 413–425.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez, I., Hernández, R., Modolell, J., et al., Competence to develop sensory organs is temporally and spatially regulated in Drosophila epidermal primordial, EMBO J., 1990, vol. 9, pp. 3583–3592.

    PubMed Central  PubMed  Google Scholar 

  • Romani, S., Campuzano, S., Macagno, E.R., et al., Expression of achaete and scute genes in Drosophila imaginal discs and their function in sensory organ development, Genes Dev., 1989, vol. 3, pp. 997–1007.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Gomez, M. and Ghysen, A., The expression and role of a proneural gene, achaete, in the development of the larval nervous system of Drosophila, EMBO J., 1993, vol. 12, pp. 1121–1130.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruiz-Gomez, M. and Modolell, J., Deletion analysis of the achaete-scute locus of Drosophila melanogaster, Genes Dev., 1987, vol. 1, pp. 1238–1246.

    Article  CAS  PubMed  Google Scholar 

  • Sato, M., Kojima, T., Michiue, T., et al., Bar homeobox genes are latitudinal prepattern genes in the developing Drosophila notum whose expression is regulated by the concerted functions of decapentaplegic and wingless, Development, 1999, vol. 126, pp. 1457–1466.

    CAS  PubMed  Google Scholar 

  • Sato, M. and Saigo, K., Involvement of pannier and u-shaped in regulation of decapentaplegic-dependent wingless expression in developing Drosophila notum, Mech. Dev., 2000, vol. 93, pp. 127–138.

    Article  CAS  PubMed  Google Scholar 

  • Shilo, B.Z., Signaling by the Drosophila epidermal growth factor receptor pathway during development, Exp. Cell Res., 2003, vol. 284, pp. 140–149.

    Article  CAS  PubMed  Google Scholar 

  • Skeath, J.B. and Carroll, S.B., Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing, Genes Dev., 1991, vol. 5, pp. 984–995.

    Article  CAS  PubMed  Google Scholar 

  • Stern, C., Two or three bristles, Am. Sci., 1954, vol. 42, pp. 213–247.

    Google Scholar 

  • Stern, M.D., Aihara, H., Roccaro, G.A., et al., CtBP is required for proper development of peripheral nervous system in Drosophila, Mech. Dev., 2009, vol. 126, pp. 68–79.

    Article  CAS  PubMed  Google Scholar 

  • Sweetman, D. and Münsterberg, A., The vertebrate spalt genes in development and disease, Dev. Biol., 2006, vol. 293, pp. 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Torres, M. and Sanchez, L., The scute (T4) gene act as a numerator element of the X:A signal that determines the state of activity of Sex-lethal in Drosophila, EMBO J., 1989, vol. 8, pp. 3079–3086.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsai, S.F., Strauss, E., and Orkin, S.H., Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter, Genes Dev., 1991, vol. 5, pp. 919–931.

    Article  CAS  PubMed  Google Scholar 

  • Vanolst, L., Fromental-Ramain, C., and Ramain, P., Toutatis, a TIP5-related protein, positively regulates Pannier function during Drosophila neural development, Development, 2005, vol. 132, pp. 4327–4338.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Hatton-Ellis, E., and Simpson, P., The kinase Sgg modulates temporal development of macrochaetes in Drosophila by phosphorylation of Scute and Pannier, Development, 2012, vol. 139, pp. 325–334.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zecca, M., Basler, K., and Struhl, G., Sequential organizing activities of Engrailed, Hedgehog and Decapentaplegic in the Drosophila wing, Development, 1995, vol. 121, pp. 2265–2278.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Bukharina.

Additional information

Original Russian Text © T.A. Bukharina, D.P. Furman, 2015, published in Ontogenez, 2015, Vol. 46, No. 3, pp. 131–142.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukharina, T.A., Furman, D.P. The mechanisms determining bristle pattern in Drosophila melanogaster . Russ J Dev Biol 46, 99–110 (2015). https://doi.org/10.1134/S1062360415030029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360415030029

Keywords

Navigation