Skip to main content
Log in

Expression of functional GABAA receptors in neuroendocrine gastropancreatic cells

  • Original Article
  • Transport Processes, Metabolism and Endocrinology: Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Gastropancreatic neuroendocrine cells synthesize large amounts of γ-aminobutyric acid (GABA). This amino acid neurotransmitter appears to be stored in and released from, vesicles similar to small synaptic vesicles. So far, the function of GABA in gastropancreatic, neuroendocrine cells has not been clarified. Previous work suggested that only pancreatic, glucagon-producing α2 cells contain functional GABAA receptors. Using subunit-specific antibodies in sections of human antral mucosa, a human gastrinoma and rat pancreas, we show that expression of GABAA receptors is abundant in gastropancreatic, neuroendocrine cells. Using the patch-clamp technique in the wholecell mode we demonstrate that both the rat insulinoma cell line RIN 38 and the amphicrine cell line AR42J express functional GABAA receptors, which are characterized by a relatively low benzodiazepine and Zn2+ sensitivity and by an insensitivity to the inverse benzodiazepine agonist 6,7-α-methoxy-4-ethyl-β-carboline-3-carboxylate (DMCM). In contrast to neurons, activation of GABAA receptors leads to a membrane depolarization. This depolarization presumably activates voltage-gated Ca2+ channels, resulting in an increase in cytosolic Ca2+ concentration, [Ca2+]i, as shown with the fluorimetric dye fura-2. The combination of GABA release, GABAA receptor activation and the [Ca2+]i increase could constitute an autocrine mechanism, modulating the release of hormones such as gastrin, insulin and somatostatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahnert-Hilger G, Wiedenmann B (1992) The amphicrine pancreatic cell line, AR42J, secretes GABA and amylase by separate regulated pathways. FEBS Lett 314: 41–44

    Google Scholar 

  2. Ahnert-Hilger G, Grube K, Kvols L, Lee I, Monch E, Riecken EO, Schmitt L, Wiedenmann B (1993) Gastroenteropancreatic neuroendocrine tumours contain a common set of synaptic vesicle proteins and amino acid neurotransmitters. Eur J Cancer 29A: 1982–1984

    Google Scholar 

  3. Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, Cascalho M, Folli F, Richter Olesen H, DeCamilli P (1990) Identification of the 64 K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347: 151–156

    Google Scholar 

  4. Bergsten P, Grapengiesser E, Gylfe E, Tengholm A, Hellman B (1994) Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J Biol Chem 269: 8749–8753

    Google Scholar 

  5. von Blankenfeld G, Kettenmann H, Turner J, Ahnert-Hilger A, Wiedenmann B (1993) GABAA-receptors in neuroendocrine cells (abstract). Mol Biol Cell [Suppl] 4: 110a

    Google Scholar 

  6. Bovolin P, Santi MR, Puia G, Costa E, Grayson D (1992) Expression pattern of γ-aminobutyric acid type A receptor subunit mRNAs in primary cutlures of granule neurons and astrocytes from neonatal rat cerebella. Proc Natl Acad Sci USA 89: 9344–9348

    Google Scholar 

  7. Cherubini E, Gaiarsa JL, Ben Ari Y (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 14: 515–519

    Google Scholar 

  8. DeLorey TM, Olsen RW (1992) Gamma-aminobutyric acid A receptor structure and function. J Biol Chem 267: 16747–16750

    Google Scholar 

  9. Draguhn A, Verdoorn TA, Ewert M, Seeburg PH, Sakmann B (1990) Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+. Neuron 5: 781–788

    Google Scholar 

  10. Duggan MJ, Stephenson FA (1990) Biochemical evidence for the existence of gamma-aminobutyrate A receptor iso-oligomers. J Biol Chem 265: 3831–3835

    Google Scholar 

  11. Erdo SL, Wolff JR (1990) Gamma-aminobutyric acid outside the mammalian brain. J Neurochem 54: 363–372

    Google Scholar 

  12. Gilon P, Shepherd RM, Henquin JC (1993) Oscillations of secretion driven by oscillations of cytoplasmic Ca2+ as evidences in single pancreatic islets. J Biol Chem 268: 22265–22268

    Google Scholar 

  13. Hadingham KL, Wingrove P, Le-Bourdelle B, Palmer KJ, Ragan CI, Whiting PJ (1993) Cloning of cDNA sequences encoding human α2 and α3 gamma-aminobutyric acid A receptor subunits and characterization of the benzodiazepine pharmacology of recombinant α1, α2, α3, and α5-containing human gamma-aminobutyric acid A receptors. Mol Pharmacol 43:970–975

    Google Scholar 

  14. Hadingham KL, Wingrove P, Wafford KA, Bain C, Kemp JA, Palmer KJ, Wilson AW, Wilcox AS, Sikela JM, Ragan CI, Whiting PJ (1993) Role of the β-subunit in determining the pharmacology of human γ-aminobutyric acid type A receptors. Mol Pharmacol 44:1211–1218

    Google Scholar 

  15. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391: 85–100

    Google Scholar 

  16. Harty RF, Franklin PA (1983) GABA affects the release of gastrin and somatostatin from rat antral mucosa. Nature 303: 623–624

    Google Scholar 

  17. Harty RF, Franklin PA (1986) Cholinergic mediation of gamma-aminobutyric acid-induced gastrin and somatostatin release from rat antrum. Gastroenterology 91: 1221–1226

    Google Scholar 

  18. Hellman B, Gylfe E, Grapengiesser E, Lund PE, Berts A (1992) Cytoplasmic Ca2+ oscillations in pancreatic beta-cells. Biochim Biophys Acta 1113: 295–305

    Google Scholar 

  19. Jessen KR, Hills JM, Limbrick AR (1988) GABA immunoreactivity and 3H-GABA uptake in mucosal epithelial cells of the rat stomach. Gut 29: 1549–1556

    Google Scholar 

  20. Kaufman DL, Salzler CM, Tian J, Forsthuber T, Ting GS, Robinson P, Atkinson MA, Sercarz EE, Tobin AJ, Lehmann PV (1993) Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366: 69–72

    Google Scholar 

  21. Knoflach F, Rhyner T, Villa M, Kellenberger S, Drescher U, Malherbe P (1991) The γ3-subunit of the GABAA-receptor confers sensitiviy to benzodiazepine receptor ligands. FEBS Lett 293: 191–194

    Google Scholar 

  22. Michalik M, Erecinska M (1992) GABA in pancreatic islets: metabolism and function. Biochem Pharmacol 44: 1–9

    Google Scholar 

  23. Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schoefield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338: 582–585

    Google Scholar 

  24. Rorsman P, Berggren PO, Bokvist K, Ericson H, Mohler H, Ostenson CG, Smith PA (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341: 233–236

    Google Scholar 

  25. Sakaue M, Saito N, Tanaka C (1987) Immunohistochemical localization of gamma-aminobutyric acid (GABA) in the rat pancreas. Histochemistry 86: 365–369

    Google Scholar 

  26. Sambrook J, Fritsch EF, Maniatis T (eds) (1982) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratories, Cold Spring Harbour, NY

    Google Scholar 

  27. Stacher G, Starker D (1975) Inhibitory effect of bromazepam on insulin-stimulated gastric acid secretion in man. Am J Dig Dis 20: 156–161

    Google Scholar 

  28. Stacher G, Bauer P, Brunner H, Grunberger J (1976) Gastric acid secretion, serum-gastrin levels and psychomotor function under the influence of placebo, insulin-hypoglycemia, and/or bromazepam. Int J Clin Pharmacol Biopharm 13: 1–10

    Google Scholar 

  29. Sudhof TC, Jahn R (1991) Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6: 665–677

    Google Scholar 

  30. Thomas Reetz A, Hell JW, During MJ, Walch Solimena C, Jahn R, De Camilli P (1993) A gamma-aminobutyric acid transporter driven by a proton pump is present in synaptic-like microvesicles of pancreatic beta cells. Proc Natl Acad Sci USA 90:5317–5321

    Google Scholar 

  31. Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, McDevitt HO (1993) Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366:72–75

    Google Scholar 

  32. Turner JD, Bodewitz G, Thompson CL, Stephenson FA (1993) Immunohistochemical mapping of gamma-aminobutyric acid type A receptor γ subunits in rat central nervous system In: Stephans DN (ed) Anxiolytic-carbolines: from molecular biology to the clinics. Springer, Berlin Heidelberg New York, pp 29–49

    Google Scholar 

  33. Verdoorn TA (1994) Formation of heteromeric γ-aminobutyric acid type A receptors containing two different α subunits. Mol Pharmacol 45: 475–480

    Google Scholar 

  34. Verdoorn TA, Draguhn A, Ymer S, Seeburg PH, Sakmann B (1990) Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4: 919–928

    Google Scholar 

  35. Wiedenmann B, Huttner WB (1989) Synaptophysin and chromogranins/secretogranins-widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch B Cell Pathol 58: 95–121

    Google Scholar 

  36. Williamson RE, Pritchett DB (1994) Levels of benzodiazepine receptor subtypes and GABAA receptor α-subunit mRNA do not correlate during development. J Neurochem 63: 413–418

    Google Scholar 

  37. Yang W, Reyes AA, Lan NC (1994) Identification of the GABAA receptor subtype mRNA in human pancreatic tissue. FEBS Lett 346: 257–262

    Google Scholar 

  38. Ymer S, Draguhn A, Wisden W, Werner P, Keinänen K, Schofield PR, Sprengel R, Pritchett DB, Seeburg PH (1990) Structural and functional characterization of the γ1, subunit of the GABAA/benzodiazepine receptors. EMBO J 9: 3261–3267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Blankenfeld, G., Enkvist, M.O.K., Kettenmann, H. et al. Expression of functional GABAA receptors in neuroendocrine gastropancreatic cells. Pflügers Arch 430, 381–388 (1995). https://doi.org/10.1007/BF00373913

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373913

Key words

Navigation