Skip to main content
Log in

Semi-automated image analysis of the true tensile drawing behaviour of polymers to large strains

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An image analysis system has been developed using commercially available hardware with custom software to investigate the deformation behaviour of solid polymers in uniaxial tension. This technique provides a rapid, semi-automated non-contacting method for determining true process stress-strain-strain-rate behaviour for both homogeneous and inhomogeneous deformation. The relative displacements of printed transverse grid lines are determined from images captured during a standard monotonic tensile test, providing local measures of strain. The examination of a time series of images allows the generation of true strain-rate data, and concurrent monitoring of the total draw force from the load cell allows the generation of true stress data at those times when the images are captured. Therefore, it is possible to produce a series of process uniaxial true stress-strain curves for individual “elements” of material within the gauge length of the specimen. Synthetic elastomers drawn at ambient temperature have been found to display relatively homogeneous deformation, resulting in a simple process axial stress-strain curve for the single-speed test, whereas in the case of inhomogeneous deformation (“necking”) exhibited by polypropylene, it is verified that each element of material experiences a slightly different deformation process. This spatially variant deformation is related to the original location of the particular element with respect to the point of neck initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Wills, G. Capaccio and I. M. Ward, J. Polym. Sci. Polymer Phys. Ed. 18 (1980) 493.

    Article  CAS  Google Scholar 

  2. M. A. Wilding and I. M. Ward, Polymer 22 (1981) 870.

    Article  CAS  Google Scholar 

  3. D. L. M. Cansfield, G. Capaccio and I. M. Ward, Polym. Eng. Sci. 16 (1976) 721.

    Article  CAS  Google Scholar 

  4. P. D. Coates and I. M. Ward, J. Mater. Sci. 13 (1978) 1957.

    Article  CAS  Google Scholar 

  5. D. I. Wimpenny, Mater. Design 13(1) (1992) 29.

    Article  CAS  Google Scholar 

  6. N. E. Wrigley, Mater. Sci. Technol. 3 (1987) 161.

    Article  CAS  Google Scholar 

  7. F. J. Lockett, Mater. Design 13(2) (1992) 71.

    Article  CAS  Google Scholar 

  8. R. N. Haward, Polymer 28 (1987) 1485.

    Article  CAS  Google Scholar 

  9. C. G'sell and J. J. Jonas, J. Mater. Sci. 14 (1979) 583.

    Article  Google Scholar 

  10. C. G'sell, J. M. Hiver, A. Dahoun and A. Souahi, ibid.27 (1992) 5031.

    Article  CAS  Google Scholar 

  11. J. S. Sirkis and T. J. Lim, Exp. Mech. December (1991) 382.

  12. D. N. Harvey, Proceedings IDDRG 13th Biennial Congress, February 20 1984, Melbourne, Australia, p. 403.

  13. S. M. Metwalli, A. R. Ragab, A.H. Kamel and A. A. Sahab, IBM Kuwait Scientific Centre Report — KSC013, July 1985.

  14. A. R. Ragab, S. M. Metwalli and J. Rueda, “Current advances in Mechanical Design and Production”, Third Cairo University MDP Conference, Cairo, 28–30 December 1985 (Pergamon Press).

  15. S. M. Metwalli, A. R. Ragab, A. H. Kamel and A. Abdul Saheb, Exp. Mech. December (1987) 414.

  16. V. J. Parks, Opt. Eng. 21 (1982) 633.

    Article  Google Scholar 

  17. J. S. Sirkis and C. E. Taylor, Exp. Mech. 30 (1990) 26.

    Article  Google Scholar 

  18. J. S. Sirkis, Opt. Eng. 29 (1990) 1485.

    Article  Google Scholar 

  19. A. R. Haynes and P. D. Coates, in “Proceedings of the Polymer Processing Society 9th Annual Meeting”, Manchester, UK (Polymer Processing Society; 1992) p. 418.

  20. P. D. Coates, R. G. Speight and A. R. Haynes, Polymer 35 (1994) 3831.

    Article  CAS  Google Scholar 

  21. A. R. Haynes, PhD thesis, University of Bradford (1994).

  22. A. Peterlin, J. Mater. Sci. 6 (1971) 490.

    Article  CAS  Google Scholar 

  23. G. Meinel and A. Peterlin, J. Polym. Sci. (A-2) 9 (1971) 67.

    CAS  Google Scholar 

  24. P. D. Coates and I. M. Ward, J. Mater. Sci. 15 (1980) 2897.

    Article  CAS  Google Scholar 

  25. S. Nazarenko, S. Bensason, A. Hiltner and E. Baer, Polymer 35 (1994) 3883.

    Article  CAS  Google Scholar 

  26. J. M. Allport, PhD thesis, University of Bradford (1994).

  27. V. Noparatanakailas, PhD thesis, University of Bradford (1994).

  28. S. M. Pourmahnaei, PhD thesis, University of Bradford (1989).

  29. P. D. Coates, D. I. Ellis and S. M. Pourmahnaei, Plast. Rubb. Process. Applic. 8 (1987) 165.

    CAS  Google Scholar 

  30. A. J. Day, J. M. Allport, W. P. Fischer, P. D. Coates and A. Mimaroglu, in “Proceedings of the ABAQUS Users Conference”. Aachen (HKS, Rhode Island, 1993) pp. 151–64.

    Google Scholar 

  31. A. R. Haynes and P. D. Coates, in “Proceedings of the Polymer Processing Society, Regional Meeting, Strasbourg (Polymer Processing Society, 1994) p. 152.

  32. P. D. Coates, PhD thesis, Department of Physics, University of Leeds (1976).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, A.R., Coates, P.D. Semi-automated image analysis of the true tensile drawing behaviour of polymers to large strains. Journal of Materials Science 31, 1843–1855 (1996). https://doi.org/10.1007/BF00372199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00372199

Keywords

Navigation