Skip to main content
Log in

A 9-node mixed shell element based on the Hu-Washizu principle

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes a new 9-node degenerated shell element based on a nonlinear mixed formulation. To avoid locking phenomena, we present a mixed formulation based on a three-field Hu-Washizu principle in which displacements, the Green strain tensors, and the second Piola-Kirchhoff stress tensors are independently assumed. In approximating strain and stress fields, covariant components of the strains and stresses measured in the element curvilinear coordinate system are interpolated by the common polynomial functions over an element. Parameter vectors of stress and strain interpolants are elementwise eliminated so that we may obtain an element stiffness matrix similar to that of the displacement model. This formulation is mathematically clear in the variational context, and can include geometrical and material nonlinearities without spoiling such clearness. Numerical results based on our approach are illustrated with satisfactory behavior of the element observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bathe, K. J.; Dvorkin, E. N. (1986): A formulation of general shell elements—the use of mixed interpolation of tensorial components. Comput. Methods Appl. Mech. Eng. 22, 697–722

    Google Scholar 

  • Belytschko, T.; Stolarski, H.; Liu, W. K.; Carpenter, N.; Ong, J. S. J. (1985): Stress projection for membrane and shear locking in shell finite elements. Comput. Methods Appl. Mech. Eng. 51, 221–258

    Google Scholar 

  • Horrigmoe, G.; Bergan, P. G. (1978): Nonlinear analysis of free-form shells by flat finite elements. Comput. Methods Appl. Mech. Eng. 16, 11–35

    Google Scholar 

  • Huang, H. C.; Hinton, E. (1986): A new none node degenerated shell element with enhanced membrane and shear interpolation. Int. J. Numer. Methods Eng. 22, 73–92

    Google Scholar 

  • Hughes, T. J. R.; Liu, W. K. (1981): Nonlinear finite element analysis of shells—Part 1. Three dimensional shells. Comput. Methods Appl. Mech. Eng. 26, 331–362

    Google Scholar 

  • Javaherian, H.; Dowling, P. J. (1985): Large deflection elastoplastic analysis of thin shells. Eng. Struct. 7, 154–163

    Google Scholar 

  • Lee, S. W.; Wong, S. C.; Rhiu, J. J. (1985): Study of a nine-node mixed formulation finite element for thin plates and shell. Comput. Struct. 21, 1325–1334

    Google Scholar 

  • Liu, W. K.; Law, E. S.; Lam, D.; Belytschko, T. (1985): Resultant-stress degenerated-shell element. Comput. Methods Appl. Mech. Eng. 55, 259–300

    Google Scholar 

  • MacNeal, R. H.; Harder, R. L. (1985): A proposed standard set of problems to test finite element. Finite Elem. Anal. Des. 1, 3–20

    Google Scholar 

  • Owen, D. J. R.; Figueiras, J. A. (1983): Elasto-plastic analysis of anisotropic plates and shells by the semiloof element. Int. J. Numer. Methods Eng. 19, 521–539

    Google Scholar 

  • Parisch, H. (1978): A critical survey of the 9-node degenerated shell element with special emphasis on thin shell applications and reduced integration. Comput. Methods Appl. Mech. Eng. 20, 323–350

    Google Scholar 

  • Park, K. C.; Stanley, G. M. (1986): A curved C 0 shell element based on assurmed natural-coordinate strains. J. Appl. Mech. 53, 278–290

    Google Scholar 

  • Ramm, E. (1982): The Riks/Wempner approach—an extension of the displacement control method in nonlinear analysis. In: Taylor, R. L. (ed.). Recent advances in nonlinear computational mechanics, pp. 63–86. Swansea: Pineridge Press

    Google Scholar 

  • Salleb, A. F.; Chang, T. Y.; Graf, W. (1987): A quadrilateral shell element using a mixed formulation. Comput. Struct. 26, 787–803

    Google Scholar 

  • Simo, J. C.; Hughes, T. J. R. (1987): On the variational foundations of assumed strain methods. J. Appl. Mech. 53, 51–54

    Google Scholar 

  • Simo, J. C.; Ortiz, M. (1985): A unified approach finite deformation elastoplastic analysis based on hyperelastic constitutive equations. Comput. Methods Appl. Mech. Eng. 49, 221–245

    Google Scholar 

  • Simo, J. C.; Taylor, R. L.; Pister, K. S. (1985): Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208

    Google Scholar 

  • Timoshenko, S P.; Krieger, W. K. (1959): Theory of plates and shells, 2nd edn. New York: McGraw-Hill

    Google Scholar 

  • Xue, W. M.; Karlovitz, L. A.; Atluri, S. N. (1985): On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner's variational principle. Int. J. Solids Struct. 21, 97–116

    Google Scholar 

  • Yamada, T.; Wada, A.; Kikuchi, F. (1989): Control of spurious modes in a 9-node shell element based on the assumed strain approach. Theor. Appl. Mech. 38, 81–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Yagawa, March 8, 1990

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, T., Kikuchi, F. & Wada, A. A 9-node mixed shell element based on the Hu-Washizu principle. Computational Mechanics 7, 149–171 (1991). https://doi.org/10.1007/BF00369976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369976

Keywords

Navigation