Skip to main content
Log in

Modeling of heat and mass transfer for solid state fermentation process in tray bioreactor

  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A mathematical model is developed to simulate oxygen consumption, heat generation and cell growth in solid state fermentation (SSF). The fungal growth on the solid substrate particles results in the increase of the cell film thickness around the particles. The model incorporates this increase in the biofilm size which leads to decrease in the porosity of the substrate bed and diffusivity of oxygen in the bed. The model also takes into account the effect of steric hindrance limitations in SSF. The growth of cells around single particle and resulting expansion of biofilm around the particle is analyzed for simplified zero and first order oxygen consumption kinetics. Under conditions of zero order kinetics, the model predicts upper limit on cell density. The model simulations for packed bed of solid particles in tray bioreactor show distinct limitations on growth due to simultaneous heat and mass transport phenomena accompanying solid state fermentation process. The extent of limitation due to heat and/or mass transport phenomena is analyzed during different stages of fermentation. It is expected that the model will lead to better understanding of the transport processes in SSF, and therefore, will assist in optimal design of bioreactors for SSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a s(t):

Transient interfacial area per unit volume for mass transfer, m−1

A :

Area of the bed, m2

\(C_{O_2 } \) :

Gas phase oxygen concentration in the bed, kg/m3

\(C_{O_2 }^f \) :

Film phase oxygen concentration, kg/m3

C p :

Heat capacity, cal/(kg) (°C)

\(D_{O_2 }^b \) :

Effective diffusivity of oxygen in film, m2/h

\(D_{O_{2_{o}}}^b \) :

Bi-molecular diffusivity of oxygen, m2/h

\(D_{O_2 }^b {\text{ (t)}}\) :

Transient effective diffusivity of oxygen in bed, m2/h

ΔH :

Heat of the reaction, cal/kg Cell

h :

Convective heat transfer coefficient, cal/(m2)(h)(°C)

H :

Separation coefficient

k :

Thermal conductivity, cal/(m)(h)(°C)

K g :

mass transfer coefficient, m/h

\(K_{O_2 } \) :

Saturation parameter for oxygen, kg/m3

L :

Height of the bed, m

n :

Number of particles per unit volume of bed

r :

Radial position coordinate, m

r x :

Cell mass production rate, kg cell mass/m3

R(t) :

Transient radial position coordinate, m

R c :

Particle radius, m

R i :

Initial biofilm radius, m

R max :

Maximum biofilm radius, m

t :

time, h

T :

Temperature, °C

X :

Biomass concentration, kg cell/m3

X max :

Maximum biomass concentration, kg cell/m3

X p :

Biomass, kg cell

y :

Vertical position coordinate, m

\(Y_{O_2 /x} \) :

Oxygen yield coefficient, kg O2/kg Cell

z :

Transformed radial position coordinate

ɛ :

Porosity of the bed

ρ s :

Apparent density of the substrate, kg/m3

ρ x :

Density of the fungal cell, kg/m3

τ :

Tortuosity of the bed

μ m(T):

Maximum growth rate, 1/h

References

  1. Aidoo, K.E.; Hendry, R.; Wood, B.J.B.: Solid substrate fermentations. Advances in Applied Microbiology. 28 (1980) 201–237

    Article  Google Scholar 

  2. Andre, G.; Moo-Young, M.; Robinson, T.M.: Improved method for the dynamic measurement of mass transfer coefficient for application to solid-substrate fermentation. Biotechnol. Bioeng. 23 (1981) 1611–1622

    Article  CAS  Google Scholar 

  3. Cooney, C.L.; Wang, D.I.C.; Manteles, R.I.: Measurement of heat evolution and correlation with oxygen consumption during microbialgrowth. Biotechnol. Bioeng. 11 (1968) 269–281

    Article  Google Scholar 

  4. Crank, J.: Free and Moving Boundary Problems. Oxford University Press, London, 1984

    Google Scholar 

  5. Finger, S.M.; Hatch, R.T.; Regan, T.M.: Aerobic microbial growth in semisolid matrices: Heat and mass transfer limitation. Biotechnol. Bioeng. 28 (1976) 1193–1218

    Article  Google Scholar 

  6. Finlayson, B.A.: In: Nonlinear Analysis in Chemical Engineering, McGraw-Hill, New York, 1980

    Google Scholar 

  7. Froment, G.F.; Bischoff, K.B.: In: Chemical Reactor Design and Analysis, John Wiley & Co., New York, 1979

    Google Scholar 

  8. Georgiou, G.; Shuler, M.L.: A computer model for the growth and differentiation of a fungal colony on solid substrate. Biotechnol. Bioeng. 28 (1986) 405–416

    Article  CAS  Google Scholar 

  9. Hesseltine, C.W.: Solid state fermentations. Biotechnol. Bioeng. 14 (1972) 517–532

    Article  CAS  Google Scholar 

  10. Kobayashi, T.: Van Dedem, G.; Moo-Young, M.: Oxygen transfer into mycelial pellets. Biotechnol. Bioeng. 15 (1973) 27–45

    Article  CAS  Google Scholar 

  11. Laukevics, J.J.; Aspite, A.F.; Viesturs, U.S.; Tengerdy, R.P.: Steric hindrance of growth of filamentous fungi in solid substrate fermentation of wheat straw. Biotechnol. Bioeng. 27 (1985) 1687–1691

    Article  CAS  Google Scholar 

  12. Lonsane, B.K.; Ghildyal, N.P.; Budiatman, S.; Ramakrishna, S.V.: Engineering aspects of solid state fermentation. J. Enz. Microb. Technol. 7 (1985) 258–265

    Article  CAS  Google Scholar 

  13. Mitchell, D.A.; Do, D.D.; Greenfield, P.F.: A semimechanistic mathematical model for growth of Rhizophus oligosporus in a model solid-state fermentation system. Biotechnol. Bioeng. 38 (1991) 353–362

    Article  CAS  Google Scholar 

  14. Perry, R.H.; Chilton, C.H.: In: Chemical Engineer's Handbook. Fifth Edition, McGraw-Hill, New York, 1973

    Google Scholar 

  15. Raghava Rao, M.K.; Gowthaman, M.K.; Ghildyal, N.P.; Karanth, N.G.: A mathematical model for solid state fermentation in tray bioreactors. Bioprocess Engineering. 8 (1993) 255–262

    Article  Google Scholar 

  16. Rajagopalan, S.; Modak, J.M.: Heat and Mass Transfer Simulation Studies for Solid-State Fermentation Processes, Chemical Engineering Science 49 (1994) 2187–2193

    Article  CAS  Google Scholar 

  17. Rathbun, B.L.; Shuler, M.L.: Heat and mass transfer effects in static solid-substrate fermentations: Design of fermentation chambers. Biotechnol. Bioeng. 25 (1983) 929–937

    Article  CAS  Google Scholar 

  18. Saucedo-Castaneda, G.; Gutierrez-Rojas, M.; Bacquet, G.; Raimbault, M.; Vibiegra-Gonzalez, G.: Heat transfer simulation in solid substrate fermentation. Biotechnol. Bioeng. 35 (1990) 802–808

    Article  CAS  Google Scholar 

  19. Wittier, R.; Baumgartl, H., Lubbers, D.W.; Schugerl, K.: Investigations of Oxygen Transfer into Penicillium chrysogenum Pellets by Microprobe Measurements. Biotechnol. Bioeng. 28 (1986) 1024–1036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopalan, S., Modak, J.M. Modeling of heat and mass transfer for solid state fermentation process in tray bioreactor. Bioprocess Eng. 13, 161–169 (1995). https://doi.org/10.1007/BF00369700

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369700

Keywords

Navigation