Skip to main content
Log in

Numerical evaluation of mass transfer coefficient in stirred tank reactors with non-Newtonian fluid

  • Proceedings of XXV European Conference on Mixing “MIXING 15”
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

In fermentation processes, a constant supply of oxygen is fundamental for cell growth. The supply rate is controlled by the volumetric mass transfer coefficient. The literature reports few numerical studies evaluating the volumetric mass transfer coefficient for aerated systems with non-Newtonian fluids in stirred tanks. The aim of this work was to undertake a numerical study of the main hydrodynamic and mass transfer parameters, including average gas hold-up, and power number. Xanthan gum solutions were used to simulated. The simulations were performed with different impeller rotational speeds (600 to 1000 revolution per minute) and specific gas flow rates (0.4 to 1.2 volume of gas per volume of liquid per minute), adopting an Euler-Euler approach and assuming uniform spherical bubbles. The turbulence was simulated with k−ε turbulence model and sst shear stress transport turbulent model. The numerical results were compared with experimental values available in the literature. The results showed good agreement between the numerical and experimental values of gas hold-up, power number, and volumetric mass transfer coefficient. The sst shear stress transport turbulence model provided better results, compared to the standard k−ε model, for simulation of volumetric mass transfer coefficient in a non-Newtonian fluid under the conditions used. Simulations for uniform bubbles with 3 millimeters diameter gave mass transfer coefficient values that were close to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amanullah, A., Hjorth, S.A., and Nienow, A.W., Cavern sizes generated in highly shear thinning viscous fluids by SCABA 3SHP1 impellers, Food Bioprod. Process., 1997, vol. 75, p. 232.

    Article  Google Scholar 

  2. García-Ochoa, F., Gómez Castro, E., and Santos, V.E., Oxygen transfer and uptake rates during xanthan gum production, Enzyme Microb. Technol., 2000, vol. 27, p. 680.

    Article  Google Scholar 

  3. García-Ochoa, F. and Gómez, E., Mass transfer coefficient in stirred tank reactors for xanthan gum solutions, Biochem. Eng. J., 1998, vol. 1, p. 1.

    Article  Google Scholar 

  4. Badino, A.C., Facciotti, M.C.R., and Schmidell, W., Volumetric oxygen transfer coefficients (k La) in batch cultivations involving non-Newtonian broths, Biochem. Eng. J., 2001, vol. 8, p. 111.

    Article  CAS  Google Scholar 

  5. Carbajal, R.I. and Tecante, A., On the applicability of the dynamic pressure step method for kLa determination in stirred Newtonian and non-Newtonian fluids, culture media and fermentation broths, Biochem. Eng. J., 2004, vol. 18, p. 185.

    Article  CAS  Google Scholar 

  6. García-Ochoa, F. and Gómez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview, Biotechnol. Adv., 2009, vol. 27, p. 153.

    Article  Google Scholar 

  7. Chhabra, R.P. and Richardson, J.F., Non-Newtonian Flow in the Process Industries, Oxford: Butterworth–Heinemann, 1999.

    Google Scholar 

  8. Corrêa, L., Badino, A.C., and Cruz, A.J.G., Mixing design for enzymatic hydrolysis of sugarcane bagasse: methodology for selection of impeller configuration, Bioprocess Biosyst. Eng., 2016, vol. 39, p. 285. doi 10.1007/s00449-015-1512-6

    Article  Google Scholar 

  9. Campesi, A., Cerri, M.O., Hokka, C.O., and Badino, A.C., Determination of the overall shear rate in a stirred and aerated tank bioreactor, Bioprocess Biosyst. Eng., 2009, vol. 32, p. 241.

    Article  CAS  Google Scholar 

  10. Bustamante, M.C.C., Cerri, M.O., and Badino, A.C., Comparison between overall shear rate in conventional bioreactor with Rushton and Elephant ear impellers, Chem. Eng. Sci., 2013, vol. 90, p. 92.

    Article  CAS  Google Scholar 

  11. Gogate, P.R., Beenackers, A.A.C.M., and Pandit, A.B., Multiple-impeller systems with a special emphasis on bioreactors: a critical review, Biochem. Eng. J., 2000, vol. 6, p. 109.

    Article  CAS  Google Scholar 

  12. Gabelle, J.C., Augier, F., Carvalho, A., Rousset, R., and Morchain, J., Effect of tank size on kLa and mixing time in aerated stirred reactors with non-Newtonian fluids, Can. J. Chem. Eng., 2011, vol. 89, p. 1139.

    Article  CAS  Google Scholar 

  13. Xie, M.-H., Xia, J.-Y., Zhou, Z., Zhou, G.-Z., Chu, J., Zhuang, Y.-P., Zhang, S.-L., and Noorman, H., Power consumption, local and overall volumetric mass transfer coefficient in multiple-impeller stirred bioreactors for xanthan gum solution, Chem. Eng. Sci., 2014, vol. 106, p. 144.

    Article  CAS  Google Scholar 

  14. Venneker, B.C.H., Derksen, J.J., and van den Akker, H.E.A., Population balance modeling of aerated stirred vessels based on CFD, AIChE J., 2002, vol. 48, p. 673.

    Article  CAS  Google Scholar 

  15. Moilanen, P., Laakkonen, M., and Aittamaa, J., Modeling aerated fermenters with computational fluid dynamics, Ind. Eng. Chem. Res., 2006, vol. 45, p. 8656.

    Article  CAS  Google Scholar 

  16. Laakkonen, M., Moilanen, P., Alopaeus, V., and Aittamaa, J., Dynamic modeling of local reaction conditions in an agitated aerobic fermenter, AIChE J., 2006, vol. 52, p. 1673.

    Article  CAS  Google Scholar 

  17. Moilanen, P., Laakkonen, M., Visuri, O., and Aittamaa, J., Modeling local gas–liquid mass transfer in agitated viscous shear-thinning dispersions with CFD, Ind. Eng. Chem. Res., 2007, vol. 46, p. 7289.

    Article  CAS  Google Scholar 

  18. Moilanen, P., Laakkonen, M., Visuri, O., Alopaeus, V., and Aittamaa, J., Modeling mass transfer in a aerated 0.2 m3 vessel agitated by Rushton, Phasejet and Combijet impellers, Chem. Eng. J., 2008, vol. 142, p. 95.

    Article  CAS  Google Scholar 

  19. Duan, S., Yuan, G., Zhao, Y., Ni, W., Luo, H., Shi, Z., and Liu, F., Simulation of computational fluid dynamics and comparison of cephalosporin C fermentation performance with different impeller combinations, Korean J. Chem. Eng., 2013, vol. 30, p. 1097.

    Article  CAS  Google Scholar 

  20. Vlaev, S.D., Martinov, M., Pavlova, K., Russinova-Videva, S., and Georgiva, K., Characterization of NSimpeller mixing in viscous batches containing exopolysaccharides, Proc. 14th Eur. Conf. on Mixing, Warsaw, 2012, p. 10.

    Google Scholar 

  21. Gezork, K.M., Bujalski, W., Cooke, M., and Nienow, W., The transition from homogeneous to heterogeneous flow in a gassed, stirred vessel, Chem. Eng. Res. Des., 2000, vol. 78, p. 363.

    Article  CAS  Google Scholar 

  22. Parthasarathy, R. and Ahmed, N., Bubble size distribution in a gas sparged vessel agitated by a Rushton turbine, Ind. Eng. Chem. Res., 1994, vol. 33, p. 703.

    Article  CAS  Google Scholar 

  23. Gimbun, J., Rielly, C.D., Nagy, Z.K., and Derksen, J.J., Detached eddy simulation on the turbulent flow in a stirred tank, AIChE J., 2012, vol. 58, p. 3224.

    Article  CAS  Google Scholar 

  24. Bakker, A. and Fasano, J.B., A computational study of flow pattern in an industrial paper pulp chest with a side entering impeller, Proc. AIChE Annual Meeting, Miami Beach, Fla., 1992, p. 118.

    Google Scholar 

  25. Bustamante, M.C.C., Transferência de oxigênio e condições de cisalhamento em biorreactor convencional com impelidor orelha de elefante, PhD Thesis, São Carlos, Brazil: Federal Univ. of São Carlos, 2013.

    Google Scholar 

  26. Khopkar, A.R., Rammohan, A.R., Ranade, V.V., and Dudukovic, M.P., Gas–liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations, Chem. Eng. Sci., 2005, vol. 60, p. 2215.

    Article  CAS  Google Scholar 

  27. Kawase, Y., Halard, B., and Moo-Young, M., Liquidphase mass transfer coefficients in bioreactors, Biotechnol. Bioeng., 1992, vol. 39, p. 1133.

    Article  CAS  Google Scholar 

  28. ANSYS Inc. 15.0 FLUENT, User’s Guide.

  29. Kulkarni, A.L. and Patwardhan, A.W., CFD modeling of gas entrainment in stirred tank systems, IChemE, 2014, vol. 92, p. 1227.

    Article  CAS  Google Scholar 

  30. Bhattacharya, S., Hebert, D., and Kresta, S.M., Air entrainment in baffled stirred tanks, IChemE, 2007, vol. 85, p. 654.

    Article  CAS  Google Scholar 

  31. Skelland, A.P.H., Mixing and agitation of non-Newtonian fluids, in Handbook of Fluids in Motion, Cheremisinoff, N.P. and Gupta, R., Eds., Ann Arbor, Mich.: Ann Arbor Science, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Badino.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valverde, M.R., Bettega, R. & Badino, A.C. Numerical evaluation of mass transfer coefficient in stirred tank reactors with non-Newtonian fluid. Theor Found Chem Eng 50, 945–958 (2016). https://doi.org/10.1134/S0040579516060178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579516060178

Keywords

Navigation