Skip to main content
Log in

Comparison of different bioreactor performances

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bioreactors are compared based on oxygen transfer rate and efficiency, mixing performance, cell mass productivity as well as with respect to enzyme and metabolite productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AC:

acetate concentration

AL:

airlift tower loop reactor

CFU:

colony-forming units

CP:

coalescence-promoting medium

CS:

coalescence-suppressing medium

D D :

impeller clearance

D M :

molecular diffusivity

D S :

diameter of the column

DT:

flat-bladed disc turbine

D v :

vessel diameter

E. act:

enzyme activity

EDR:

energy dissipation rate

EcoRI:

restriction endonuclease

EcoR4:

protection plasmid

E O 2 :

efficiency of oxygen transfer rate

E X :

efficiency of cell mass production with respect to the specific power input

g :

acceleration of gravity

H :

height of column

H v :

vessel height

HV:

highly viscous medium

IPTG:

isopropyl thiogalactoside (inducer of Lacpromoter)

k :

fluid consistency factor

k L :

mass transfer coefficient

k La:

volumetric mass transfer coefficient

m :

exponent

N :

impeller speed

n :

exponent

n :

flow behaviour index

P :

power input

P/VL :

specific power input

PR:

marine propeller

P LacUV5 :

Lac-promoter-induced by IPTG

P R :

promoter-induced with temperature shift

ϱ O 2 :

oxygen transfer rate

q g,q O 2 :

aeration rate, specific aeration rate with respect to liquid volume

R :

density of cultivation medium

R p :

product formation rate

R X :

growth rate

SpA:

protein A

ST:

stirred tank reactor

TCC:

total cell count

t Lc :

liquid circulation time

U :

enzyme activity unit

u B :

bubble rise velocity

u G :

superficial gas velocity

V L :

volume of the liquid phase

v :

kinematic viscosity of the cultivation medium

W SG :

superficial gas velocity

X :

cell mass concentration

Y E/S :

yield coefficient of ethanol formation with respect to substrate consumption

Y P/X :

specific product formation with respect to cell concentration

Y X/E :

yield coefficient of cell growth with respect to ethanol consumption

Y X/O 2 :

yield coefficient of cell growth with respect to oxygen consumption rate

Y X/S :

yield coefficient of growth with respect to substrate consumption

θ L :

liquid mixing time

μ eff :

effective dynamic viscosity of the cultivation medium

μ W :

dynamic viscosity of water

μ max :

maximum specific growth rate

σ :

surface tension of the cultivation medium

References

  1. Schügerl, K.: Bioreaction Engineering. Vol. 2, 1991, Wiley, Chichester

    Google Scholar 

  2. Rüffer, M.: personal communication, 1991

  3. Wan Liwei: Detaillierte Untersuchungen des Mischverhaltens realer Merhphasenreaktoren. Dissertation, University Hannover, Fortschritt Berichte VDI, Reihe 8: 1990, Nr. 228

  4. Blenke, H.: Loop reactors, In: Adv. Biochem. Eng. T. K. Ghose, A. Fiechter, N. Blakebrough (Eds.), Springer, Berlin. 13, 1979, 121–214

    Google Scholar 

  5. Reuss, M.; Brammer, U.: Influence of Substrate distribution on productivities in computer controlled baker's yeast production. In “Modelling and Control of Biotechnological Processes” IFAC Symposium 1985, A. Johnson, (Ed.), Pergamon Press, Oxford, 1985. 119–124

    Google Scholar 

  6. Adler, I.; Fiechter, A.: Valuation of bioreactors for low viscous media and high oxygen transfer demand. Bioprocess Engng. 1 (1986) 51–59

    Google Scholar 

  7. Schlüter, V.; Yonsel, S.; Deckwer, W. D.: Korrelation der 02Stoffübergangskoeffizienten (kLa) in Rührreaktoren mit niederviskosen fermentationsmedien. Chem. Ing. Techn. 64 (1992) 474–475 (Synopse MS 2046/92)

    Google Scholar 

  8. Herbst, H.; Schumpe, A.; Deckwer, W. D.: Xanthan production in stirred tank fermentors: Oxygen transfer and scale-up. Chem. Eng. Technol. 1992, submitted for publication

  9. Kawase, Y.; Moo-Young, M.: Volumetric mass transfer coefficients in aerated stirred tank reactors with Newtonian and non-Newtonian media. Chem. Eng. Res. Dev. 66 (1988) 284–288

    Google Scholar 

  10. Suh, I. S.; Schumpe, A.; Deckwer, W. D.: Xanthan production in bubble column and airlift reactors. Biotechnol. Bioeng. 39 (1990) 85–94

    Google Scholar 

  11. Oosterhuis, N. M. G.; Kossen, N. W. F.; Olivier, A. P. C.; Schenk, E. S.: Scale down and optimization studies of the gluconic acid fermentation by Gluconobacter oxydans. Biotechnol. Bioeng. 27 (1985) 711–720

    Google Scholar 

  12. Sweere, A. P. J.; Mesters, J. R.; Jansen, L.; Luyben, K. Ch. A. M.; Kossen, N. W. F.: Experimental simulation of oxygen profiles and their influence on baker's yeast production: I. One-fermentor system. Biotechnol. Bioeng. 31 (1988) 567–578

    Google Scholar 

  13. Sweere, A. P. J.; Jansen, L.; Luyben, K. Ch. A. M.; Kossen, N. W. F.: Experimental simulation of oxygen profiles and their influence on baker's yeast production: II. Two-fermentor system. Biotechnol. Bioeng. 31 (1988) 579–586

    Google Scholar 

  14. Abel, C.: Untersuchungen zum Scale down von Gelöstsauerstoffbedingungen bei Backhefe-Fermentationen. Dissertation, University of Hannover, 1990

  15. Fröhlich, S.; Lotz, M.; Korte, T.; Lübbert, A.; Schügerl, K.; Seekamp, M.: Characterization of a pilot plant airlift tower loop bioreactor I: Evaluation of phase properties with model media. Biotechnol. Bioeng. 38 (1990) 43–55

    Google Scholar 

  16. Fröhlich, S.; Lotz, M.; Korte, T.; Lübbert, A.; Schügerl. K.; Seekamp, M.: Characterization of a pilot plant airlift tower loop bioreactor II: Evaluation of the global mixing properties of the gas phase during cultivation. Biotechnol. Bioeng. 38 (1991) 43–55

    Google Scholar 

  17. Schügerl, K.: Nonmechanically Agitated Bioreactor Systems. In: M. Moo-Young, (Ed.) Comprehensive Biotechnology. Vol. 2 C. L. Cooney; A. E. Humphrey (Vol. Eds.) Pergamon Press, Oxford, 1985, 99–118

    Google Scholar 

  18. Brandes, L.: Optimierung der Prozeßführung in einem Air-lift-Schlaufenreaktor mit rekombinanten Escherichia coli zur Produktion des Fusionsproteins aus SPA und EcoRI. Dissertation, University of Hannover, 1991

  19. Wu Xiaoan: Überproduktion eines rekombinanten Proteins mit multi-plasmidhaltigen Escherichia coli in einem Air-lift Schlaufenreaktor. Optimierung der Prozeßführung. Dissertation, University of Hannover, 1992

  20. Vidal-Ingigliardi, D.; Raibaud, O.: A convenient tenhnique to compare the efficiency of promoter in Escherichia coli. Nucleids Acids Research 13 (1985) 5919–5926

    Google Scholar 

  21. Bukland, B. C.; Gbewonyo, K.; Jain, D.; Glazomitzky, K.; Hunt, G.; Drew, S. W.: Oxygen transfer efficiency of hydrofoil impellers in both 8001 and 19 0001 fermentors. In: R. King (Ed.): 2nd Internat. Conference on Bioreactor Fluid dynamics, Cambridge, UK. 21–23 Sept. Elsevier, Eondon, 1988, 1–15

    Google Scholar 

  22. Möller, J.; Niehoff J.; Hotop, S.; Dors, M.; Schügerl, K.: The influence of preculture on the process performance of penicillin V production in a 100-l airlift tower loop reactor. Appl. Microbiol. Biotechnol. 37 (1992) 157–163

    Google Scholar 

  23. Möller, J.: Penicillin-Production mit einem Hochleistungsstamm von penicillium chrysogenum. Chromatographische Methoden zur Prozeßkontrolle. Dissertation, University of Hannover, 1987

  24. Schügerl, K.: Comparison of the performances of stirred tank and airlift tower loop reactors. J. of Biotechnology 13 (1190) 251–256

    Google Scholar 

  25. Lübbert, A.; Larson, B.: Detailed investigations of the multiphase flow in airlift tower loop reactors. Chem. Eng. Sci. 45 (1990) 3047–3053

    Google Scholar 

  26. Bröring, S.; Fischer, J.; Korte, T.; Sollinger, S.; Lübbert, A.: Flow structure of the dispersed gasphase in real multiphase chemical reactors investigated by a new ultrasound-doppler technique. Can. J. of Chem. Eng. 69 (1991) 1247–1256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schügerl, K. Comparison of different bioreactor performances. Bioprocess Engineering 9, 215–223 (1993). https://doi.org/10.1007/BF00369405

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369405

Keywords

Navigation