Skip to main content
Log in

Vermiculite as an economic support for immobilization of neutral protease

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A new and cheap support, vermiculite was successfully used to immobilize neutral protease by adsorption and hexamethylene diamine mediated coupling using glutaraldehyde as a bifunctional agent. Neutral protease immobilized on vermiculite by adsorption showed maximum retained activity than HMD mediated coupling. The optimum temperature for both free and immobilized neutral protease was found to be 45°C. However, the pH and thermal stabilities of immobilized neutral protease was observed to be better than that of the free enzyme. The storage stability of the immobilized enzyme was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pelczar, M. J.; Chan, E. C. S.; Krieg, N. R.: Microbiology of soil. In: Microbiology, pp. 543–549. New York: McGraw Hill International Edition 1989

    Google Scholar 

  2. Perez-Mateos, M.; Rad, J. C.: Immobilization of alkaline phosphatase by soil structural units. Biotechnol. Appl. Biochem. 11 (1989) 371–378

    Google Scholar 

  3. Kiss, S.; Dragem-Bularda, M.; Radulescu, D.: Soil polysaccharides: Activity and agricultural importance: In: Burnes, R. G. (Ed): Soil Enzymes, pp. 117–147. London, Academic Press 1978

    Google Scholar 

  4. Sarkar, J. M.; Burns, R. G.: Synthesis and properties of β-D-glucosidase-phenolic copolymers as analogues of soil humic-enzyme complexes. Soil Biol. Biochem. 16 (1984) 619–625

    Google Scholar 

  5. Ladd, J. N.; Paul, E. A.: Changes in enzymic activity and distribution of acid-soluble amino acid nitrogen in soil during nitrogen immobilization and mineralization. Soil Biol. Biochem. 5 (1973) 825–840

    Google Scholar 

  6. Chibata, I.: Preparation of immobilized enzymes and microbial cells: In: Immobilized Enzymes, pp. 11–15. New York: Kodansha Tokyo, J. Wiley & Sons 1978

    Google Scholar 

  7. Kennedy, J. F.: Immobilized enzymes: In: Scouten, W. H. (Ed.): Solid Phase Biochemistry, pp. 265–273. New York: J. Wiley & Sons 1983

    Google Scholar 

  8. Tarafdar, J. C.; Chhonkar, P. K.: Urease clay interactions: I — Adsorption of urease on clays saturated with different cations. J. Indian. Soc. Soil Sci. 30 (1982) 27–32

    Google Scholar 

  9. Sarkar, J. M.; Leonowice, A.; Jean, M.: Immobilization of enzymes on clays and soils. Soil Biol. Biochem. 21 (1989) 223–230

    Google Scholar 

  10. Jackson, M. L.: Phosphorus determinations for soils: In: Soil Chemical analysis, pp. 57–167, New Delhi: Prentice-Hall of India Pvt. Ltd. 1967

    Google Scholar 

  11. Anson, M. L.: The estimation of pepsin, trypsin, papain and cathepsin with haemoglobin. J. Gen. Physiol. 22 (1938) 79–89

    Google Scholar 

  12. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J.: Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193 (1951) 265–275

    PubMed  Google Scholar 

  13. Zaborsky, O.: Properties of covalently bonded water-insoluble enzyme-polymer conjugates. In: Immobilized Enzymes, pp. 49–50, Cleaveland, Ohio: C.R.C. Press 1974

    Google Scholar 

  14. Beddows, C. G.; Mirauer, R. A.: Immobilization of β-galactosidase and other enzymes onto p-amino-carbanilated cellulose derivatives. Biotechnol. Bioeng. 22 (1980) 311–321

    Google Scholar 

  15. Axen, R.; Myrin, P. A.: Janson, J. C.: Chemical fixation of chymotrypsin to water insoluble cross linked dextran and solubilization of the enzyme derivative by means of dextranase. Biopolymers 9 (1970) 401–413

    Google Scholar 

  16. Garcia III, A.; Oh, S.; Engler, C. R.: Cellulase immobilization on Fe3O4 and characterization. Biotechnol. Bioeng. 33 (1989) 321–326

    Google Scholar 

  17. Ohmiya, K.; Tanimura, S.; Kobayashi. T.; Shimizu, S.: Preparation and properties of proteases immobilized on anion exchange resin with glutaraldehyde. Biotechnol. Bioeng. 20 (1978) 1–15

    Google Scholar 

  18. Puvanakrishnan, R.; Bose, S. M.: Studies on immobilization of trypsin on sand. Biotechnol. Bioeng. 22 (1980) 919–928

    Google Scholar 

  19. Alvesda Silva, M.; Gill, M. H.: Graft copolymers as supports for the immobilization of biological compounds: In: Guilbault, G. G.; Mascini, M. (Eds): Analytical uses of immobilized biological compounds for detection, medical and industrial uses, pp. 177–185, D. Reidel Publishing Co.

  20. Axen, R.; Ernbach, S.: Chemical fixation of enzymes on cyanogen halide activated polysaccharide carriers. Eur. J. Biochem. 18 (1971) 351–360

    Google Scholar 

  21. Goldstein, L.; Levin, Y.; Katchalski, E.: A water insoluble polyanionic derivative of trypsin. II. Effect of the poly electrolyte carrier on the kinetic behaviour of the bound trypsin. Biochemistry 3 (1964) 1913–1919

    Google Scholar 

  22. Goldstein, L.: A new polyamine carrier for immobilization of proteins water insoluble derivatives of pepsin and trypsin. Biochim. Biophys. Acta. 327 (1973) 132–137

    Google Scholar 

  23. Puvanakrishnan, R.; Bose, S. M.: Immobilization of pepsin on sand: Preparation, characterization, and application. Indian J. Biochem. Biophys. 21 (1984) 323–326

    Google Scholar 

  24. Lozano, P.; Manjon, A.; Romojaro, F.; Iborra, J. L.: Properties of pectolytic enzymes covalently bound to nylon for apricot juice clarification. Process Biochem 23 (1988) 75–78

    Google Scholar 

  25. Krysteva, M. A.; Shopova, B. I.; Yotova, L. Y.; Karasavova, M. I.: Covalent binding of enzymes to synthetic membranes containing acrylamide units, using formaldehyde. Biotechnol. Appl. Biochem. 13 (1991) 106–111

    Google Scholar 

  26. Tarhan, L.; Uslan, A. H.: Characterization and operational stability of immobilized catalase. Process Biochem. 25 (1990) 14–18

    Google Scholar 

  27. Ulbrich, R.; Schellenberger, A.; Damerau, W.: Studies on the thermal inactivation of immobilized enzymes. Biotechnol. Bioeng. 28 (1986) 511–522

    Google Scholar 

  28. Hayashi, T.; Ikada, Y.: Lipoprotein lipase immobilization onto polyacrolein microspheres. Biotechnol. Bioeng. 36 (1990) 593–600

    Google Scholar 

  29. Sreenivasulu, S.; Dhar, S. C.; Puvanakrishnan, R.: Effect of immobilization on the stability and characteristics of alkaline proteinase. Leather Science 32 (1985) 75–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chellapandian, M., Sastry, C.A. Vermiculite as an economic support for immobilization of neutral protease. Bioprocess Eng. 8, 27–31 (1992). https://doi.org/10.1007/BF00369260

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369260

Keywords

Navigation