Skip to main content
Log in

Iteration sequences and their representations

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

Given a function f and an initial value a 1, we consider properties and representations of the iteration sequence a 1 , f(a 1 ), f(f(a 1 )),.... Because iteration sequences often cannot be expressed in explicit algebraic terms, there is an emphasis on using various graphical and numerical representations. An empirical investigation examined the influence of representations on the discovery of properties and on problem solving abilities for iteration sequences. A total of 79 students (11th graders) and 22 secondary mathematics teachers participated. The empirical study was implemented with a computer program, developed by the author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böhm, W.: 1988, Wörterbuch der Pädagogik, Kröner, Stuttgart.

    Google Scholar 

  • Butts, T.: 1981, ‘Fixed point iteration—An interesting way to begin a calculus course’, Two-Year-College Mathematics Journal 12(1), 2–7.

    Google Scholar 

  • Dreyfus, T. and Eisenberg, Th.: 1980, ‘On teaching periodicity’, International Journal for Mathematical Education in Science and Technology 11(4), 507–509.

    Google Scholar 

  • Dreyfus, T. and Eisenberg, Th.: 1982, ‘Intuitive functional concepts: A baseline study on intuitions’, Journal for Research in Mathematics Education 13(5), 360–380.

    Google Scholar 

  • Dreyfus, T. and Vinner, S.: 1989, ‘Images and definitions for the concept of function’, Journal for Research in Mathematics Education 20(4), 356–366.

    Google Scholar 

  • Engel, A.: 1979, ‘Algorithmen für den Taschenrechner’, Der Mathematikunterricht 25(6), 52–77.

    Google Scholar 

  • Engel, A.: 1983, ‘Algorithms’, in Proceedings of the Fourth International Congress of Mathematics Education, Boston, pp. 312–330.

  • Freudenthal, H.: 1983, Didactical Phenomenology of Mathematical Structures, D. Reidel, Dordrecht.

    Google Scholar 

  • Goldenberg, E. P.: 1987, ‘Believing is seeing: how preconceptions influence the perception of graphs’, in Proceedings of the Eleventh International Conference of Psychology of Mathematics Education, Montreal, Vol. 1, pp. 197–203.

  • Goldenberg, E. P.: 1988, ‘Mathematics, metaphors, and human factors: mathematical, technical and pedagogical challenges in the educational use of graphical representation of functions’, Journal of Mathematical Behavior 7(2), 135–174.

    Google Scholar 

  • Janvier, C.: 1978, ‘The interpretation of complex cartesian graphs representing situations’, Doctoral dissertation, University of Nottingham.

  • Janvier, C.: 1987, Problems of Representation in the Teaching and Learning of Mathematics, Lawrence Erlbaum Associates, New Jersey.

    Google Scholar 

  • Kaput, J. J., et al.: 1987a, ‘Multiple representations and reasoning with discrete intensive quantities in a computer-based environment’, in Proceedings of the Eleventh International Conference of Psychology of Mathematics Education, Montreal, Vol. 2, pp. 289–295.

  • Kaput, J. J.: 1987b, ‘Representation systems and mathematics’, in Janvier C. (ed.), Problems of Representation..., New Jersey, pp. 19–26.

  • Kerslake, D.: 1981, ‘Graphs’, in Hart, K. M. (ed.), Children's Understanding of Mathematics: 11–16, London.

  • Maor, E.: 1980, ‘Some uses of exchange key on a calculator’, Mathematics Teacher 73(3), 213–217.

    Google Scholar 

  • Smith, W. D.: 1972, ‘An investigation of the ability of students in the Secondary School Mathematics Curriculum Improvement Study to generalize their knowledge of function concepts to other stimulus settings’, Doctoral dissertation, University of Maryland.

  • Schwarz, B. and Dreyfus, T.: 1989, ‘Transfer between function representations: a computational model’, in Proceedings of the Thirteenth International Conference of Psychology of Mathematics Education, Paris, Vol. 3, pp. 143–150.

  • Stowasser, R. and Mohry, B.: 1978, Rekursive Verfahren, Schroedel, Hannover.

    Google Scholar 

  • Vollrath, H.-J.: 1978, ‘Iteration mit elementaren Funktionen’, Praxis der Mathematik 20(9), 257–262.

    Google Scholar 

  • Vollrath, H.-J.: 1984, Methodik des Begriffslehrens im Mathematikunterricht, Klett, Stuttgart.

    Google Scholar 

  • Vollrath, H.-J.: 1986, ‘Search strategies as indicators of functional thinking’, Educational Studies in Mathematics 17, 387–400.

    Google Scholar 

  • Waits, B. K. and Schultz, J. E.: 1979, ‘An iterative method for computing solutions to equations using a calculator’, Mathematics Teacher 72(9), 685–689.

    Google Scholar 

  • Weigand, H.-G.: 1988, ‘Zur Bedeutung der Darstellungsform für das Entdecken von Funktionseigenschaften’, Journal für Mathematik-Didaktik 9(4), 287–325.

    Google Scholar 

  • Weigand, H.-G.: 1989, Zum Verständnis von Iterationen im Mathematikunterricht, Franzbecker, Bad Salzdetfurth.

    Google Scholar 

  • Ziegenbalg, J.: 1984, ‘Discrete modelling, difference equations and the use of computers in mathematical education’, in Berry, J. S., et al. (eds.), Teaching and Applying Mathematical Modelling, Horwood, Chichester.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigand, HG. Iteration sequences and their representations. Educ Stud Math 22, 411–437 (1991). https://doi.org/10.1007/BF00367906

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367906

Keywords

Navigation